首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The specific sugar residues and their linkages in the oligosaccharides from pig kidney and human urine cerebroside sulfate activator proteins (saposin B), although previously hypothesized, have been unambiguously characterized. Exhaustive sequential exoglycosidase digestion of the trimethyl-p-aminophenyl derivatives, followed by either matrix-assisted laser desorption/ionization and/or mass spectrometry, was used to define the residues and their linkages. The oligosaccharides were enzymatically released from the proteins by treatment with peptidyl-N-glycosidase F and separated from the proteins by reversed-phase high-performance liquid chromatography (HPLC). Reducing termini were converted to the trimethyl-p-aminophenyl derivative and the samples were further purified by normal-phase HPLC. The derivatized carbohydrates were then treated sequentially with a series of exoglycosidases of defined specificity, and the products of each digestion were examined by mass spectrometry. The pentasaccharides from pig kidney and human urine protein were shown to be of the asparagine-linked complex type composed of mannose-alpha 1-6-mannose-beta 1-4-N-acetylglucosamine-N-acetylglucosamine(alpha 1-6-fucose). This highly degraded structure probably represents the final product of intra-lysosomal exoglycosidase digestion. Oligosaccharide sequencing by specific exoglycosidase degradation coupled with mass spectrometry is more rapid than conventional oligosaccharide sequencing. The procedures developed will be useful for sequencing other oligosaccharides including those from other members of the lipid-binding protein class to which cerebroside sulfate activator belongs. (c) 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Biosynthesis and maturation of cellular membrane glycoproteins   总被引:2,自引:0,他引:2  
The biosynthesis and the processing of asparagine-linked oligosaccharides of cellular membrane glycoproteins were examined in monolayer cultures of BHK21 cells and human diploid fibroblasts after pulse- and pulse-chase labeling with [2-3H]mannose. After pronase digestion, radiolabeled glycopeptides were characterized by high-resolution gel filtration, with or without additional digestion with various exoglycosidases and endoglycosidases. Pulse-labeled glycoproteins contained a relatively homogenous population of neutral oligosaccharides (major species: Man9GlcNAc2ASN). The vast majority of these asparagine-linked oligosaccharides was smaller than the major fraction of lipid-linked oligosaccharides from the cell and was apparently devoid of terminal glucose. After pulse-chase or long labeling periods, a significant fraction of the large oligomannosyl cores was processed by removal of mannose units and addition of branch sugars (NeuNAc-Gal-GlcNAc), resulting in complex acidic structures containing three and possibly five mannoses. In addition, some of the large oligomannosyl cores were processed by the removal of only several mannoses, resulting in a mixture of neutral structures with 5-9 mannoses. This oligomannosyl core heterogeneity in both neutral and acidic oligosaccharides linked to asparagine in cellular membrane glycoproteins was analogous to the heterogeneity reported for the oligosaccharides of avian RNA tumor virus glycoproteins (Hunt LA, Wright SE, Etchison JR, Summers DF: J Virol 29:336, 1979).  相似文献   

3.
A practical sequence is described for converting d-glucosamine into peracetylated Gal(beta-1,4)GlcNTroc(beta1-S)Ph and Neu5Ac(alpha-2,3)Gal(beta-1,4)GlcNTroc(beta1-S)Ph building blocks using a synthetic strategy based on chemoenzymatic oligosaccharide synthesis. The known trichloroethoxycarbonyl, N-Troc, protecting group was selected as a suitable protecting group for both enzymatic and chemical reaction conditions. These oligosaccharide building blocks proved effective donors for the beta-selective glycosylation of the unreactive OH-3 of a polymeric PEG-bound acceptor and for the axial OH-2 of a mannose acceptor in good yields. The resulting complex oligosaccharides are useful for vaccine and pharmaceutical applications.  相似文献   

4.
The chemical synthesis and biological activity of undecaprenyl pyrophosphate bacillosamine (Und-PP-Bac), an obligatory intermediate in the asparagine-linked glycosylation pathway of Campylobacter jejuni, are reported. The key transformation involves the coupling of bacillosamine phosphate and undecaprenyl phosphate. The synthetic Und-PP-Bac can be used to investigate the activity of the enzyme PglA, which catalyzes the first glycosyl transfer in substrate biosynthesis for N-linked protein glycosylation in the pathogenic gram-negative bacterium. The availability of this synthetic substrate makes it possible to access polyprenyl-linked oligosaccharides, such as the GalNAc-alpha-1,3-bacillosamine-alpha-1-PP-Und intermediate, that will enable exploration of the remaining enzymes in the prokaryotic glycosylation pathway. Study of the bacterial glycosylation system will provide insight into the corresponding eukaryotic process, which is currently poorly understood.  相似文献   

5.
We developed a Jocic-type protocol for the construction of the pyrrolonaphthoxazepine (PNOX) core. After an initial investigation based on the isolation of a trichloromethyl carbinol derivative, we shifted our attention towards a multicomponent single-step protocol. Screening of a variety of bases and solvents led to the identification of the optimum conditions for the preparation of the key α-aryloxy carboxylic acids to undergo intramolecular cyclization. The novel chemical route significantly improved overall yields for the preparation of PNOX-based compounds and was successfully extended to the preparation of 1,4-benzoxazinone-based templates.  相似文献   

6.
Traditional chemical synthesis of heparin oligosaccharides first involves assembly of the full length oligosaccharide backbone followed by sulfation. Herein, we report an alternative strategy in which the O-sulfate was introduced onto glycosyl building blocks as a trichloroethyl ester prior to assembly of the full length oligosaccharide. This allowed divergent preparation of both sulfated and non-sulfated building blocks from common advanced intermediates. The O-sulfate esters were found to be stable during glycosylation as well as typical synthetic manipulations encountered during heparin oligosaccharide synthesis. Furthermore, the presence of sulfate esters in both glycosyl donors and acceptors did not adversely affect the glycosylation yields, which enabled us to assemble multiple heparin oligosaccharides with preinstalled 6-O-sulfates.  相似文献   

7.
A synthetic method for the preparation of 6-aryl-1,4-dimethyl-9H-carbazoles involving a palladium catalyzed coupling reaction of 1,4-dimethyl-9H-carbazole-6-boronic acids and (hetero)aryl halides is described.  相似文献   

8.
Reductive amination with n-hexylamine followed by permethylation was used as a procedure for the liquid secondary ion mass spectrometry (LSIMS) analysis of Asn-linked oligosaccharides. Initial experiments with this procedure were performed on maltoheptaose. These experiments show that exhaustive methylation at the newly formed secondary nitrogen forms a quaternary ammonium salt. When this is subjected to positive ion LSIMS, an abundant M+ ion is observed. This procedure was applied to the Asn-linked oligosaccharides released from human transferrin and ribonuclease-B. The reductively aminated, permethylated mixture of oligosaccharides from ribonuclease-B afforded a positive ion LSI mass spectrum in which M+ ions for Mans5–9GlcNAc2 could be assigned. The positive ion LSI mass spectrum obtained from the mixture of oligosaccharides isolated from human transferrin showed M+ ions that could be assigned to both monosialylated and disialylated biantennary complex type oligosaccharides. Reductive amination followed by permethylation of the Asn-linked oligosaccharides isolated from baculovirus expressed mouse interleukin-3 produced in Bombyx mori gave a positive ion LSI mass spectrum in which the oligosaccharides could be assigned the monosaccharide composition Man2–4[Fuc]GlcNAc2 and Man2GlcNAc2. These are believed to be dimannose, trimannose, and tetramannose chitobiose core oligosaccharides, three of which are fucosylated.  相似文献   

9.
Sulfated glycans are involved in many biological processes, making well-defined sulfated oligosaccharides highly sought molecular probes. These compounds are a considerable synthetic challenge, with each oligosaccharide target requiring specific synthetic protocols and extensive purifications steps. Here, we describe a general on resin approach that simplifies the synthesis of sulfated glycans. The oligosaccharide backbone, obtained by Automated Glycan Assembly (AGA), is subjected to regioselective sulfation and hydrolysis of protecting groups. The protocol is compatible with several monosaccharides and allows for multi-sulfation of linear and branched glycans. Seven diverse, biologically relevant sulfated glycans were prepared in good to excellent overall yield.

Well-defined sulfated oligosaccharides are important synthetic targets. We present an on resin approach for the synthesis of sulfated glycans with a broad reaction scope that overcomes previous limitations associated with on resin synthesis.  相似文献   

10.
For automated oligosaccharide synthesis to impact glycobiology, synthetic access to most carbohydrates has to become efficient and routine. Methods to install "difficult" glycosidic linkages have to be established and incorporated into the overall synthetic concept. Described here is the first automated solid-phase synthesis of oligosaccharides containing the challenging beta-mannosidic linkage. Carboxybenzyl mannoside building blocks proved effective beta-mannosylation agents and resulted in excellent conversion and good to moderate selectivities. [(Triisopropylsilyl)oxy]-methyl ether (Tom), served as an orthogonal, minimally intrusive, and readily cleavable protecting group for the elongation of the C3 position of mannose. The desired oligosaccharide products were readily separated from by-products containing unwanted stereoisomers using reverse-phase HPLC. The methods described here expand the scope of carbohydrates currently accessible by automation as many oligosaccharides of biological interest contain beta-mannosidic linkages.  相似文献   

11.
《Tetrahedron: Asymmetry》2007,18(19):2358-2364
The preparation of the proline analogue (2S,3aS,7aS)-octahydroindole-2-carboxylic acid (Oic) and its enantiomer, (2R,3aR,7aR)-Oic, is described. A racemic precursor has been synthesized in good yield and subjected to HPLC resolution on a chiral column. The high efficiency of both the synthetic and chromatographic procedures has allowed the isolation of multigram quantities of each amino acid in enantiomerically pure form and suitably protected for use in peptide synthesis.  相似文献   

12.
We report a practical and scalable synthetic route for the preparation of alpha-substituted beta-amino acids (beta(2)-amino acids). Michael addition of a chiral hydroxylamine, derived from alpha-methylbenzylamine, to an alpha-alkylacrylate followed by cyclization gives a diastereomeric mixture of alpha-substituted isoxazolidinones. These diastereomers are separable by column chromatography. Subsequent hydrogenation of the purified isoxazolidinones followed by Fmoc protection affords enantiomerically pure Fmoc-beta(2)-amino acids, which are useful for beta-peptide synthesis. This route provides access to both enantiomers of a protected beta(2)-amino acid.  相似文献   

13.
[reaction: see text] An efficient and improved procedure for the preparation of aromatic azides and their application in the Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition ("click reaction") is described. The synthesis of aromatic azides from the corresponding amines is accomplished under mild conditions with tert-butyl nitrite and azidotrimethylsilane. 1,4-Disubstituted 1,2,3-triazoles were obtained in excellent yields from a variety of aromatic amines without the need for isolation of the azide intermediates.  相似文献   

14.
Recently, some of us reviewed the synthes is and chemical reactions of conjugated azoalkenes.1 Emphasis was placed on the fact that these derivatives represent at the same time interesting products and useful intermediates in organic chemistry. In fact, conjugated azoolefins undergo a wide range of 1,4-additions, (3+2)- and (4+2)-cycloadditions allowing various functionalizations of the carbon atom adjacent to the carbonyl group, and the construction of many types of interesting five - and six-membered heterocycles, such as widely substituted pyrrole and pyridazine rings. These relevant synthetic objectives appear not to be smoothly obtained by other procedures. In addition, many of the compounds produced from conjugated azoalkenes can profitably be employed in the preparation of natural, pharmaceutical, and phytopharmaceutical products.1  相似文献   

15.
选取具有不同结构特征的N-糖链、硫酸软骨素寡糖、人乳寡糖以及海洋来源的壳寡糖、褐藻胶寡糖、卡拉胶寡糖和硫酸岩藻寡糖等,对电喷雾质谱在寡糖的主链序列、分支位点、硫酸基取代位置确定、单糖组成和聚合度分析等方面的应用技术及碎片离子的断裂规律进行了总结.根据相邻同类碎片离子之间的质荷比差值可初步判断寡糖的单糖组成类型;通过与色谱分离技术联用或衍生化方法可提高寡糖的分辨率和离子化效率,并测得寡糖的分子量及聚合度;借助串联质谱及对寡糖还原端的特异性标记,可获得寡糖的还原端残基和部分序列信息;根据寡糖产生的特征碎片离子及其丰度大小可判断残基的特定位置和类型.另外,寡糖的分支通常作为一个整体发生糖苷键断裂或产生D离子,据此可判断分支点的位置;根据硫酸寡糖产生的特异性跨环断裂碎片,可以确定硫酸基的连接位置.这些规律和方法的总结为未知寡糖的结构和序列的分析提供了启发和指导.  相似文献   

16.
An expeditious and efficient synthesis of 1,6-anhydro-beta-L-hexopyranosyl derivatives 3 as valuable building blocks for the preparation of L-sugars is herein reported. This route relies upon the use of a domino reaction involving five synthetic steps from the 5,6-dihydro-1,4-dithiin 4. As 1,6-anhydro derivatives 3 are obtained, dithioethylene bridge removal and double-bond dihydroxylation give access to protected L-allose and L-glucose in stereoselective fashion and high yields.  相似文献   

17.
High-performance displacement chromatography (HPDC) provides a means of increasing the capacity of a chromatographic column, while maintaining the resolution afforded by high-performance liquid chromatographic (HPLC) instruments. The high capacity and high resolution of HPDC can be exploited in tryptic mapping to facilitate the characterization of a protein preparation. In this manner, minor constituents of the mixture, which may be difficult to isolate by conventional chromatographic methods, can be obtained in sufficient amounts to permit chemical characterization by established techniques. The isolation by HPDC of peptides obtained by digestion of recombinant human growth hormone (rhGH) and the subsequent characterization of the peptides are described. The identification of certain of these peptides revealed information on the specificity of trypsin for the substrate, rhGH, and for autolysis. Fractions from the HPDC tryptic map were collected and analyzed by electrospray ionization mass spectrometry (ESI-MS) either directly or following further separation by gradient elution HPLC. Fragment ions observed in the ESI mass spectra facilitated identification of peptides obtained by HPDC tryptic mapping.  相似文献   

18.
A new route for the preparation of pomalidomide is described in the study. The synthetic procedure starts from 4-nitroisobenzofuran-1,3-dione and 3-aminopiperidine-2,6-dione hydrochloride via a three-step reaction resulting in a total yield of 65% with a high-performance liquid chromatographic (HPLC) purity of 99.56% and a low palladium residue level of 2 ppm. This method can be deemed as an efficient, practical, and environmentally friendly synthetic route for the preparation of pomalidomide.  相似文献   

19.
Analysis of small amounts of glycoproteins by high performance liquid chromatography (HPLC) and liquid secondary ion mass spectrometry (LSIMS) together with enzyme digestion has been investigated using fetuin as a model. Preliminary data indicates that 71% of the expected peptides were detected by LSIMS analysis of 200 pmol total digest. HPLC profiles of peptides and glycopeptides were obtained from 2 nmol of digest using a reversed phase (C18) column eluted in a solvent system containing TFA, water and acetonitrile. This has provided glycopeptides for subsequent oligosaccharide analysis. Strategies are reviewed for the chromatographic characterization of oligosaccharides following their release from glycopeptides by chemical and enzymatic procedures.  相似文献   

20.
Glycosynthases are synthetic enzymes derived from retaining glycosidases in which the catalytic nucleophile has been replaced. The mutation allows irreversible glycosylation of sugar acceptors using glycosyl fluoride donors to afford oligosaccharides without any enzymatic hydrolysis. Glycosynthase technology has proven fruitful for the facile synthesis of useful oligosaccharides, therefore the expansion of the glycosynthase repertoire is of the utmost importance. Herein, we describe for the first time a glycosynthase, derived from a retaining xylanase, that synthesizes a range of xylo-oligosaccharides. The catalytic domain of the retaining endo-1,4-beta-xylanase from Cellulomonas fimi (CFXcd) was successfully converted to the corresponding glycosynthase by mutation of the catalytic nucleophile to a glycine residue. The mutant enzyme (CFXcd-E235G) was found to catalyze the transfer of a xylobiosyl moiety from alpha-xylobiosyl fluoride to either p-nitrophenyl beta-xylobioside or benzylthio beta-xylobioside to afford oligosaccharides ranging in length from tetra- to dodecasaccharides. These products were purified by high performance liquid chromatography in greater than 60% combined yield. 1H and 13C NMR spectroscopic analyses of the isolated p-nitrophenyl xylotetraoside and p-nitrophenyl xylohexaoside revealed that CFXcd-E235G catalyzes both the regio- and stereo-selective synthesis of xylo-oligosaccharides containing, exclusively, beta-(1 --> 4) linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号