首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex [PtMe(2)(dppa)], 1a, dppa = Ph(2)PNHPPh(2), which has previously been prepared as a mixture with the dimeric form [Pt(2)Me(4)(micro-dppa)(2)], was synthesized in pure form by the reaction of [PtCl(2)(dppa)] with MeLi. The aryl analogue [Pt(p-MeC(6)H(4))(2)(dppa)], 1b, was prepared by replacement of SMe(2) in cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with dppa. The reaction of the chelate complexes 1 with one equiv. of dppa afforded the complexes [PtR(2)(dppa-P)(2)], R=Me, 2a and R=p-MeC(6)H(4) 2b. The reaction of [PtR(2)(dppa)], 1, with neat MeI gave the organoplatinum(iv) complexes [PtR(2)MeI(dppa)], R=Me, 5a and R=p-MeC(6)H(4), 5b. The structure of 5a, determined by X-ray crystallography, indicated that the complex undergoes self-assembly by intermolecular N-H . . . I-Pt hydrogen bonding. MeI was also double oxidatively added to organodiplatinum(ii) complex cis,cis-[Me(2)Pt(micro-SMe(2))(micro-dppa)PtMe(2)], to give diorganoplatinum(iv) complex [Me(3)Pt(micro-dppa)(micro-I)(2)PtMe(3)], 4. The aryl analogue organodiplatinum(ii) complex cis,cis-[(p-MeC(6)H(4))(2)Pt(micro-SMe(2))(micro-dppa)Pt(p-MeC(6)H(4))(2)], 3b, was prepared by the reaction of cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with half equiv. of dppa, but 3b refused to react with MeI, probably because of the steric effects of the aryl ligands. The tetramethyl complex [PtMe(4)(dppa)], 6, was prepared either by reaction of 5a with MeLi or by replacement of SMe(2) in [Pt(2)Me(8)(micro-SMe(2))(2)] with dppa. All the complexes were fully characterized in solution by multinuclear NMR ((1)H, (13)C, (31)P and (195)Pt) methods and their coordination compared with that of the corresponding known dppm complexes.  相似文献   

2.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

3.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

4.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

5.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

6.
A series of homoleptic and heteroleptic platinum(ii) complexes [Pt(C[triple bond, length as m-dash]CFc)(2)(L-L)] (L-L = COD , 1,1'-bis(diphenylphosphino)ferrocene (dppf) ), Q(2)[cis/trans-Pt(C(6)F(5))(2)(C[triple bond, length as m-dash]CFc)(2)] (cis, Q = PMePh(3), ; trans, Q = NBu(4), ), (NBu(4))[Pt(bzq)(C[triple bond, length as m-dash]CFc)(2)] (Hbzq = 7,8-benzoquinoline) and (NBu(4))(2)[Pt(C[triple bond, length as m-dash]CFc)(4)] has been synthesized and characterized spectroscopically and the structures of .2CHCl(3), and .2H(2)O.2CH(2)Cl(2) confirmed by single-crystal X-ray studies. The anion of complex , shows strong O-Hpi(C[triple bond, length as m-dash]C) interactions and weaker C-Clpi(C[triple bond, length as m-dash]C) contacts between the protons of two water and two CH(2)Cl(2) molecules and the C(alpha)[triple bond, length as m-dash]C(beta) of mutually cis alkynyl groups. In this complex the presence of additional O-HH-C(Cp) and C-ClH-C(Cp) contacts gives rise to an extended bidimensional network. The optical and electrochemical properties of all derivatives have been examined. It is remarkable that for complexes and a facile oxidatively induced coupling, giving rise to 1,4-diferrocenylbutadiyne, is observed, this also having been proven by chemical oxidation.  相似文献   

7.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

8.
A novel series of [PtTl(2)(C[triple chemical bond]CR)(4)](n) (n = 2, R = 4-CH(3)C(6)H(4) (Tol) 1, 1-naphthyl (Np) 2; n = infinity, R = 4-CF(3)C(6)H(4) (Tol(F)) 3) complexes has been synthesized by neutralization reactions between the previously reported [Pt(C[triple chemical bond]CR)(4)](2-) (R = Tol, Tol(F)) or novel (NBu(4))(2)[Pt(C[triple chemical bond]CNp)(4)] platinum precursors and Tl(I) (TlNO(3) or TlPF(6)). The crystal structures of [Pt(2)Tl(4)(C[triple chemical bond]CTol)(8)]4 acetone, 14 acetone, [Pt(2)Tl(4)(C[triple chemical bond]CNp)(8)]3 acetone1/3 H(2)O, 23 acetone 1/3 H(2)O and [[PtTl(2)(C[triple chemical bond]CTol(F))(4)](acetone)S](infinity) (S = acetone 3 a; dioxane 3 b) have been solved by X-ray diffraction studies. Interestingly, whereas in the tolyl (1) and naphthyl (2) derivatives, the thallium centers exhibit a bonding preference for the electron-rich alkyne entities to yield crystal lattices based on sandwich hexanuclear [Pt(2)Tl(4)(C[triple chemical bond]CR)(8)] clusters (with additional Tlacetone (1) or Tlnaphthyl (2) secondary interactions), in the C(6)H(4)CF(3) (Tol(F)) derivatives 3 a and 3 b the basic Pt(II) center forms two unsupported Pt-Tl bonds. As a consequence 3 a and 3 b form an extended columnar structure based on trimetallic slipped PtTl(2)(C[triple chemical bond]CTol(F))(4) units that are connected through secondary Tl(eta(2)-acetylenic) interactions. The luminescent properties of these complexes, which in solution (blue; CH(2)Cl(2) 1,2; acetone 3) are very different to those in solid state (orange), have been studied. Curiously, solid-state emission from 1 is dependent on the presence of acetone (green) and its crystallinity. On the other hand, while a powder sample of 3 is pale yellow and displays blue (457 nm) and orange (611 nm) emissions, the corresponding pellets (KBr, solid) of 3, or the fine powder obtained by grinding, are orange and only exhibit a very intense orange emission (590 nm).  相似文献   

9.
A variable-temperature (19)F NMR study of the homoleptic bimetallic anionic complexes X(2)[Pt(2)(mu-SC(6)F(5))(2)(SC(6)F(5))(4)] (X = K(+), 1a; Bu(4)N(+), 1b), X(2)[Pt(2)(mu-p-SC(6)HF(4))(2)(p-SC(6)HF(4))(4)] (X = K(+), 2a; Bu(4)N(+), 2b), and X(2)[Pt(2)(mu-p-SC(6)F(4)(CF(3)))(2)(p-SC(6)F(4)(CF(3)))(4)] (X = K(+), 3a; Bu(4)N(+), 3b) demonstrates the occurrence of dynamic processes that give rise to several stereoisomeric species in solution. Experimental evidence suggests that both inversion of configuration at the sulfur bridging atoms and hindered rotation about the carbon-sulfur bond are involved in generating the observed isomers. The solid-state X-ray diffraction structures of compounds 1b, 2b, and 3b show that all three complexes contain planar [Pt(2)(mu-S)(2)] rings with an anti configuration.  相似文献   

10.
Palladium and platinum complexes with HmtpO (where HmtpO=4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine, an analogue of the natural occurring nucleobase hypoxanthine) of the types [M(dmba)(PPh3)(HmtpO)]ClO4[dmba=N,C-chelating 2-(dimethylaminomethyl)phenyl; M=Pd or Pt], [Pd(N-N)(C6F5)(HmtpO)]ClO4[N-N=2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or N, N, N', N'-tetramethylethylenediamine (tmeda)] and cis-[M(C6F5)2(HmtpO)2] (M=Pd or Pt) (head-to-head atropisomer in the solid state) have been obtained. Pd(II) and Pt(II) complexes with the anion of HmtpO of the types [Pd(tmeda)(C6F5)(mtpO)], [Pd(dmba)(micro-mtpO)] 2, and [NBu4]2[M(C6F5)2(micro-mtpO)]2(M=Pd or Pt) have been prepared starting from the corresponding hydroxometal complexes. Complexes containing simultaneously both the neutral HmtpO ligand and the anionic mtpO of the type [NBu4][M(C6F5)2(HmtpO)(mtpO)] (M=Pd or Pt) have been also obtained. In these mtpO-HmtpO metal complexes, for the first time, prototropic exchange is observed between the two heterocyclic ligands. The crystal structures of [Pd(dmba)(PPh 3)(HmtpO)]+, cis-[Pt(C6F5)2(HmtpO)2].acetone, [Pd(C6F5)(tmeda)(mtpO)].2H2O, [Pd(dmba)(micro-mtpO)]2, [NBu4]2[Pd(C6F5)2(micro-mtpO)]2.CH2Cl2.toluene, [NBu4]2[Pt(C6F5)2(micro-mtpO)](2).0.5(toluene), and [NBu4][Pt(C6F5)2(mtpO)(HmtpO)] have been established by X-ray diffraction. Values of IC50 were calculated for the new platinum complexes cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR), lung (NCI-H460), and breast cancers (T47D). At 48 h incubation time, both complexes were about 8-fold more active than cisplatin in T47D and show very low resistance factors against an A2780 cell line, which has acquired resistance to cisplatin. The DNA adduct formation of cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by these platinum complexes on plasmid DNA pB R322 were also obtained.  相似文献   

11.
A series of heteropolynuclear Pt-Tl-Fe complexes have been synthesized and structurally characterized. The final structures strongly depend on the geometry of the precursor and the Pt/Tl ratio used. Thus, the anionic heteroleptic cis-configured [cis-Pt(C(6)F(5))(2)(C≡CFc)(2)](2-) and [Pt(bzq)(C≡CFc)(2)](-) (Fc = ferrocenyl) complexes react with Tl(+) to form discrete octanuclear (PPh(3)Me)(2)[{trans,cis,cis-PtTl(C(6)F(5))(2)(C≡CFc)(2)}(2)] (1), [PtTl(bzq)(C≡CFc)(2)](2) (5; bzq = benzoquinolate), and decanuclear [trans,cis,cis-PtTl(2)(C(6)F(5))(2)(C≡CFc)(2)](2) (3) derivatives, stabilized by both Pt(II)···Tl(I) and Tl(I)···η(2)(alkynyl) bonds. By contrast, Q(2)[trans-Pt(C(6)F(5))(2)(C≡CFc)(2)] (Q = NBu(4)) reacts with Tl(+) to give the one-dimensional (1-D) anionic [(NBu(4)){trans,trans,trans-PtTl(C(6)F(5))(2)(C≡CFc)(2)}](n) (2) and neutral [trans,trans,trans-PtTl(2)(C(6)F(5))(2)(C≡CFc)(2)](n) (4) polymeric chains based on [PtFc(2)](2-) platinate fragments and Tl(+) (2) or [Tl···Tl](2+) (4) units, respectively, connected by Pt(II)···Tl(I) and secondary weak κ-η(1) (2) or η(2) (4) alkynyl···Tl(I) bonding. The formation of 1-4 is reversible, and thus treatment of neutral 3 and 4 with PPh(3)MeBr causes the precipitation of TlBr, returning toward the formation of the anionic 1 and 2' (Q = PPh(3)Me). Two slightly different pseudopolymorphs were found for 2', depending on the crystallization solvent. Finally, the reaction of the homoleptic [Pt(C≡CFc)(4)](2-) with 2 equiv of Tl(+) affords the tetradecanuclear sandwich type complex [Pt(2)Tl(4)(C≡CFc)(8)] (6). Electrochemical, spectroelectrochemical, and theoretical studies have been carried out to elucidate the effect produced by the interaction of the Tl(+) with the Pt-C≡CFc fragments. The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) of 1-5 reveal that, in general, neutralization of the anionic fragments increases the stability of the fully oxidized species and gives higher E(1/2) (Fc) values than those observed in their precursors, increasing with the number of Pt-Tl bonding interactions. However, the electronic communication between Fc groups is reduced or even lost upon Tl(+) coordination, as confirmed by electrochemical (CVs and DPVs voltammograms, 1-5) and spectroelectrochemical (UV-vis-NIR, 2-4) studies. Complexes 2 and 4 still display some electronic interaction between the Fc groups, supported by the presence of an IVCT band in their UV-vis-NIR spectra of oxidized species and additional comparative DFT calculations with the precursor [trans-Pt(C(6)F(5))(2)(C≡CFc)(2)](2-) and complex 3.  相似文献   

12.
Neutralization reactions between (NBu4)2[ trans-Pt(C 6F5)2(CN)2] 1 and (NBu4)2[cis-Pt(C6F5)2(CN)2] 2 with TlPF 6 have been carried out, and the resulting structures of [trans,trans,trans-Tl2{Pt(C6F5)2(CN)2}.(CH3COCH3) ] n [4.(CH3COCH3)2] n and {Tl[Tl{cis-Pt(C6F5)2(CN)2}].(H2O)} n [5.(H2O)] n have been determined by X-ray crystallography. Remarkably, the change from trans to cis geometry on the platinum substrate causes a significant decrease in the Pt(II)...Tl(I) metallophilic interaction. Thus, the platinum center in the trans fragment easily connects with two Tl(I) ions forming a distorted pseudo-octahedron PtTl2, which generates a final two-dimensional layered structure by secondary additional intermolecular Tl(I)...N(CN) interactions. However, the [cis-Pt(C6F5)2(CN)2] (2-) fragment interacts strongly with just one Tl center leading to an extended helical [-Pt-Tl-Pt-Tl-] n(n-) chain. In this case, the second thallium center neutralizes the anionic chain mainly through Tl...N(CN) ( intra) and Tl...F(C 6F 5) (intra and inter)actions. The reaction of TlPF 6 with the monoanionic fragment (NBu4)[cis-Pt(C6F5)2(CN)(PPh2C[triple bond]CPh)] 3 yields the discrete associated dimer [Tl{cis-Pt(C6F5)2(CN)(PPh2C[triple bond]CPh)}] 2 [ 6] 2. Dimer [ 6] 2 could be described as two square pyramids with the thallium atoms in the apical positions, connected through Tl...N(cyano) interactions. The final heteropolynuclear Pt-Tl complexes, except 4 at room temperature, show bright emission in the solid state when irradiated with UV-vis radiation, in contrast to the precursors 1 and 3, which are not luminescent. This difference indicates that the emissions in 4- 6 are presumably related to the interaction between the metal centers. The Pt-Tl bonding interactions and, consequently, the emissive properties are lost in solution at room temperature, as shown by the conductivity and NMR measurements. However, variable-concentration luminescence measurements in glassy acetonitrile solutions indicate the formation of different aggregates with different degrees of Pt...Tl interactions for 4 and 5 and a dimeric structure similar to that observed in solid state for 6.  相似文献   

13.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

14.
Reaction of the trinuclear Pt(III)-Pt(III)-Pt(II) [(C6F5)2Pt(III)(mu-PPh2)2Pt(III)(mu-PPh2)2Pt(C6F5)2] (2) derivative with NBu4Br or NBu4I results in the formation of the trinuclear Pt(II) complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = I (3), Br (4)] through an intramolecular PPh2/C6F5 reductive coupling and the formation of the phosphine PPh2C6F5. The trinuclear Pt(II) complex [(PPh2C6F5)(C6F5)Pt(mu-PPh2)Pt(mu-PPh2)2Pt(C6F5)2] (5), which displays two Pt-Pt bonds, can be obtained either by halide abstraction in 4 or by refluxing of 2 in CH2Cl2. This latter process also implies an intramolecular PPh2/C6F5 reductive coupling. Treatment of complex 5 with several ligands (Br-, H-, and CO) results in the incorporation of the ligand to the cluster and elimination of one (X = H-) or both (X = Br-, CO) Pt-Pt bonds, forming the trinuclear complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = Br (6), H (7)] or [(PPh2C6F5)(C6F5)Pt(mu-PPh2)2Pt(mu-PPh2)(CO)Pt(C6F5)2(CO)] (8). The structures of the complexes have been established on the basis of 1H, 19F, and 31P NMR data, and the X-ray structures of the complexes 2, 3, 5, and 7 have been established. The chemical relationship between the different complexes has also been studied.  相似文献   

15.
By reaction of NBu(4)[Au(C(6)Cl(5))(2)] with TlPF(6) in acetone the complex [Au(2)Tl(2)(C(6)Cl(5))(4)].(CH(3))(2)C=O is obtained, which shows a butterfly type arrangement of metals through short Au(I)-Tl(I) and Tl(I)-Tl(I) interactions. The last one is likely to be responsible for its luminescence behavior.  相似文献   

16.
Reactions of Fe[N(SiMe(3))(2)](2) with 1 and 2 equiv of Ph(3)SiSH in hexane afforded dinuclear silanethiolato complexes, [Fe(N(SiMe(3))(2))(mu-SSiPh(3))](2) (1) and [Fe(SSiPh(3))(mu-SSiPh(3))](2) (2), respectively. Various Lewis bases were readily added to 2, generating mononuclear adducts, Fe(SSiPh(3))(2)(L)(2) [L = CH(3)CN (3a), 4-(t)BuC(5)H(4)N (3b), PEt(3) (3c), (LL) = tmeda (3d)]. From the analogous reactions of M[N(SiMe(3))(2)](2) (M = Mn, Co) and [Ni(NPh(2))(2)](2) with Ph(3)SiSH in the presence of TMEDA, the corresponding silanethiolato complexes, M(SSiPh(3))(2)(tmeda) [M = Mn (4), Co (5), Ni (6)], were isolated. Treatment of 3a with (PPh(4))(2)[MoS(4)] or (NEt(4))(2)[FeCl(4)] resulted in formation of a linear trinuclear Fe-Mo-Fe cluster (PPh(4))(2)[MoS(4)(Fe(SSiPh(3))(2))(2)] (7) or a dinuclear complex (NEt(4))(2)[Fe(2)(SSiPh(3))(2)Cl(4)] (8). On the other hand, the reaction of 3a with [Cu(CH(3)CN)(4)](PF(6)) gave a cyclic tetranuclear copper cluster Cu(4)(SSiPh(3))(4) (9), where silanethiolato ligands were transferred from iron to copper. Silicon-sulfur bond cleavage was found to occur when the cobalt complex 5 was treated with (NBu(4))F in THF, and a cobalt-sulfido cluster Co(6)(mu(3)-S)(8)(PPh(3))(6) (10) was isolated upon addition of PPh(3) to the reaction system. The silanethiolato complexes reported here are expected to serve as convenient precursors for sulfido cluster synthesis.  相似文献   

17.
The study of the reaction between the ethylene [Pt(eta-H2C = CH2)(PPh3)2] or alkyne [Pt(eta2-HC [triple bond] CR)(PPh3)2] (R = SiMe3 1, Bu(t) 2) complexes with [cis-Pt(C6F5)2(thf)2] (thf = tetrahydrofuran) has enabled us to observe the existence of competitive processes between the activation of a P-C(Ph) bond on the PPh3 ligand, to give the binuclear derivative [cis-(C6F5)2Pt(mu-Ph)(mu-PPh2)Pt(PPh3)] 3, and the activation of a C-H bond of the unsaturated group, to give the corresponding (mu-hydride)(mu-vinyl) [cis, cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-CH = CH2)Pt(C6F5)2] 4 or (mu-hydride)(mu-alkynyl) [cis,cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-C [triple bond]CR)Pt(C6F5)2] (R = SiMe3 5, Bu(t) 6) compounds, respectively. The monitoring of these reactions by NMR spectroscopy has allowed us to detect several intermediates, and to propose a mechanism for the C-H bond activation. In addition, the structures of the (muo-hydride)(mu-alkynyl) complex 5 and the unprecedented (mu-hydride)(mu-vinyl) derivative 4 have been obtained by X-ray crystallographic analyses.  相似文献   

18.
The neutral, five-coordinate platinum nitrosyl compounds [Pt(C(6)F(5))(3)(L)(NO)] (2) [L=CNtBu (2 a), NC(5)H(4)Me-4 (2 b), PPhMe(2) (2 c), PPh(3) (2 d) and tht (2 e)] have been prepared by the reaction of [NBu(4)][Pt(C(6)F(5))(3)(L)] (1) with NOClO(4) in CH(2)Cl(2). The ionic compound [N(PPh(3))(2)][Pt(C(6)F(5))(4)(NO)] (4) has been prepared in a similar way starting from the homoleptic species [N(PPh(3))(2)](2)[Pt(C(6)F(5))(4)] (3). Compounds 2 and 4 are all diamagnetic with [PtNO](8) electronic configuration and show nu(NO) stretching frequencies at around 1800 cm(-1). The crystal and molecular structures of 2 c and 4 have been established by X-ray diffraction methods. The coordination environment for the Pt center in both compounds can be described as square pyramidal (SPY-5). Bent nitrosyl coordination is observed in both cases with Pt-N-O angles of 120.1(6) and 130.2(7) degrees for 2 c and 4, respectively. The bonding mechanism of the nitrosyl ligand coordinated to various model [Pt(II)R(4)](2-) (R=H, Me, Cl, CN, C(6)F(5) or C(6)Cl(5)) and [Pt(C(6)F(5))(3)(L)](-) (L=CNMe, PH(3)) systems has been studied by density functional calculations at the B3LYP level of theory, using the SDD basis set. The R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO interactions generally involve two components: i) a direct Pt-NO bonding interaction and ii) multicenter-bonding interactions between the N atom of the NO ligand and the donor atoms of the R and L ligands. Moreover, with the more complex R groups, C(6)F(5) or C(6)Cl(5), a third component has been found to arise, which involves multicenter electrostatic interactions between the positively charged NO ligand and the negatively charged halo-substituents in the ortho-position of the C(6)X(5) groups (X=F, Cl). The contribution of each component to the Pt-NO bonding in R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO compounds seems to be modulated by the electronic and steric effects of the R and L ligands.  相似文献   

19.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

20.
The reaction of [NBu(4)](2)[Ni(C(6)F(5))(4)] (1) with solutions of dry HCl(g) in Et(2)O results in the protonolysis of two Nibond;C(6)F(5) bonds giving [NBu(4)](2)[[Ni(C(6)F(5))(2)](2)(mu-Cl)(2)] (2 a) together with the stoichiometrically required amount of C(6)F(5)H. Compound 2 a reacts with AgClO(4) in THF to give cis-[Ni(C(6)F(5))(2)(thf)(2)] (3). Reacting 3 with phosphonium halides, [PPh(3)Me]X, gives dinuclear compounds [PPh(3)Me](2)[[Ni(C(6)F(5))(2)](2)(mu-X)(2)] (X=Br (2 b) or I (2 c)). Solutions of compounds 2 in CH(2)Cl(2) at 0 degrees C do not react with excess CNtBu, but do react with CO (1 atm) to split the bridges and form a series of terminal Ni(II) carbonyl derivatives with general formula Qcis-[Ni(C(6)F(5))(2)X(CO)] (4). The nu(CO) stretching frequencies of 4 in CH(2)Cl(2) solution decrease in the order Cl (2090 cm(-1))>Br (2084 cm(-1))>I (2073 cm(-1)). Compounds 4 revert to the parent dinuclear species 2 on increasing the temperature or under reduced CO pressure. [NBu(4)]cis-[Ni(C(6)F(5))(2)Cl(CO)] (4 a) reacts with AgC(6)F(5) to give [NBu(4)][Ni(C(6)F(5))(3)(CO)] (5, nu(CO)(CH(2)Cl(2))=2070 cm(-1)). Compound 5 is also quantitatively formed ((19)F NMR spectroscopy) by 1:1 reaction of 1 with HCl(Et(2)O) in CO atmosphere. Complex 3 reacts with CO at -78 degrees C to give cis-[Ni(C(6)F(5))(2)(CO)(2)] (6, nu(CO)(CH(2)Cl(2))=2156, 2130 cm(-1)), which easily decomposes by reductive elimination of C(6)F(5)bond;C(6)F(5). Compounds 3 and 6 both react with CNtBu to give trans-[Ni(C(6)F(5))(2)(CNtBu)(2)] (7). The solid-state structures of compounds 3, 4 b, 6, and 7 have been established by X-ray diffraction methods. Complexes 4-6 are rare examples of square-planar Ni(II) carbonyl derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号