首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
(Fe, N) co-doped titanium dioxide powders have been prepared by a quick, low-temperature hydrothermal method using TiOSO4, CO(NH2)2, Fe(NO3)3, and CN3H5 · HCl as starting materials. The synthesized powders were characterized by XRD, TEM, BET, XPS, and UV–Vis spectroscopy. Experimental results show that the as-synthesized TiO2 powders are present as the anatase phase and that the N and Fe ions have been doped into the TiO2 lattice. The specific surface area of the powders is 167.8 m2/g by the BET method and the mean grain size is about 11 nm, calculated by Scherrer’s formula. UV–Vis absorption spectra show that the edge of the photon absorption has been red-shifted up to 605 nm. The doped titanium dioxide powders had excellent photocatalytic activity during the process of photo-degradation of formaldehyde and some TVOC gases under visible light irradiation.  相似文献   

2.
Fe3+ doped mesoporous TiO2 with ordered mesoporous structure were successfully prepared by the solvent evaporation-induced self-assembly process using P123 as soft template. The properties and structure of Fe3+ doped mesoporous TiO2 were characterized by means of XRD, EPR, BET, TEM, and UV–vis absorption spectra. The characteristic results clearly show that the amount of Fe3+ dopant affects the mesoporous structure as well as the visible light absorption of the catalysts. The photocatalytic activity of the prepared mesoporous TiO2 was evaluated from an analysis of the photodegradation of methyl orange under visible light irradiation. The results indicate that the sample of 0.50%Fe–MTiO2 exhibits the highest visible light photocatalytic activity compared with other catalysts.  相似文献   

3.
In this work, the Fe-doped mixed crystal TiO2 photocatalyst which can utilize visible light was prepared by sol-gel and heat-treated methods. During heat-treatment, the phase transformation of Fe-doped TiO2 powder occurs and the process is characterized by XRD and TG-DTA technologies. Otherwise, the sizes and shapes of Fe-doped and undoped TiO2 powders were also compared using TEM images. The azo fuchsine in aqueous solutions, as a model compound, was treated under visible light irradiation using Fe-doped mixed crystal TiO2 powders as photocatalyst. The results showed that, under visible light irradiation, the (0.25%) Fe-doped mixed crystal TiO2 powder heat-treated at 600°C for 3.0 h behaved very high photocatalytic activities for degradation of azo fuchsine. The remarkable improvement of the photocatalytic activity of TiO2 powder was elucidated through the cooperative effects of iron doping and phase transformation. The iron doping can restrain the recombination of photogenerated electron-hole pairs and the phase transformation can enhance the absorption of visible light. Furthermore, other influence factors such as azo fuchsine concentration, solution acidity, Fe3+ ion content and irradiation time were also studied. Thus, this method is applicable for the treatment of wastewater.  相似文献   

4.
N, B, Si-tridoped mesoporous TiO2, together with N-doped, N, B-codoped and N, Si-codoped TiO2, was prepared by a modified sol–gel method. The samples were characterized by wide-angle X-ray diffraction (WAXRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV–visible adsorbance spectra (UV–vis) and X-ray photoelectron spectra (XPS). The N, B, Si-tridoped mesoporous TiO2 showed small crystallite size, large specific surface area (350 m2/g), uniform pore distribution (3.2 nm) and strong absorption in the visible light region. The photocatalytic activities of the samples were evaluated by the photodegradation of 2,4-dichlorophenol (2,4-DCP) aqueous solution. The N, B, Si-tridoping sample exhibited much higher photocatalytic activity compared with other synthesized photocatalysts. The high activity could be attributed to the strong absorption in the visible light region, large specific surface area, small crystallite size, large amount of surface hydroxyl groups, and mesoporosity.  相似文献   

5.
Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultravioletvisible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradiation. The influence of doping amount of Fe3+ (ω: 0.00%–3.00%) on photocatalytic activities of TiO2 was investigated. Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorption spectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation. __________ Translated from Journal of Northwest Normal University (Natural Science), 2006, 42(6): 55–56 [译自: 西北师范大学学报(自然科学版)]  相似文献   

6.
Nanocrystalline TiO2 powders in the anatase, rutile, and mixed phases prepared by hydrolysis of TiCl4 solution were of ultrafine size (<7.2 nm) with high specific surface areas in the range 167 to 388 m2/g. In the photocatalytic degradation of phenol as model reaction, the photocatalytic properties of TiO2 nanoparticles were evaluated by use of UV–vis absorption spectroscopy and total organic carbon (TOC) content. The synthetic mixed-phase TiO2 powder calcined at 400 °C had higher activity than pure anatase or rutile; it degraded more than 90% phenol to CO2 (evaluated by TOC) after irradiation with near UV light for 90 min at a catalyst loading of 0.4 g/L. The TOC results indicated that rutile TiO2 crystallites of particle size 7.2 nm resulted in much better photocatalytic performance than particles of larger size. This result suggested that some intermediates, not determined by UV–vis absorption spectroscopy, existed in the solution after the photocatalytic process over the rutile TiO2 photocatalysts of larger crystallite size.  相似文献   

7.
The InVO4 sol was obtained by a mild hydrothermal treatment (the precursor precipitation solution at 423 K, for 4 h). Novel visible-light activated photocatalytic InVO4–TiO2 thin films were synthesized through a sol–gel dipping method from the composite sol, which was obtained by mixing the low temperature InVO4 sol and TiO2 sol. The photocatalytic activities of the new InVO4–TiO2 thin films under visible light irradiation were investigated by the photocatalytic discoloration of methyl orange aqueous solution. The thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV–Vis absorption spectroscopy (UV–Vis). The results revealed that the InVO4 doped thin films enhanced the methyl orange degradation rate under visible light irradiation, 3.0 wt% InVO4–TiO2 thin films reaching 80.1% after irradiated for 15 h.  相似文献   

8.
Novel visible-light-activated In2O3–CaIn2O4 photocatalysts were developed in this paper through a sol–gel method. The photocatalytic activities of In2O3–CaIn2O4 composite photocatalysts were investigated based on the decomposition of methyl orange under visible light irradiation (λ > 400 nm). The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis diffused reflectance spectroscopy (DRS). The results revealed that the In2O3–CaIn2O4 composite samples with different In2O3 and CaIn2O4 content can be obtained by controlling the synthesis temperature, and the composite photocatalysts extended the light absorption spectrum toward the visible region. The photocatalytic tests indicated that the composite samples demonstrated high visible-light activity for decomposition of methyl orange. The significant enhancement in the In2O3–CaIn2O4 photo-activity under visible light irradiation can be ascribed to the efficient separation of photo-generated carriers in the In2O3 and CaIn2O4 coupling semiconductors.  相似文献   

9.
The influence of NH3-treating temperature on the visible light photocatalytic activity of N-doped P25-TiO2 as well as the relationship between the surface composition structure of TiO2 and its visible light photocatalytic activity were investigated. The results showed that N-doped P25-TiO2 treated at 600°C had the highest activity. The structure of P25-TiO2 was converted from anatase to rutile at 700°C. Moreover, no N-doping was detected at the surface of P25-TiO2. There was no simply linear relationship between the visible light photocatalytic activity and the concentration of doped nitrogen, and visible light absorption. The visible light photocatalytic activity of N-doped P25-TiO2 was mainly influenced by the synergistic action of the following factors: (i) the formation of the single-electron-trapped oxygen vacancies (denoted as Vo·); (ii) the doped nitrogen on the surface of TiO2; (iii) the anatase TiO2 structure.  相似文献   

10.
CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were synthesized by a sol–gel method under mild conditions (i.e. low temperature and ambient pressure). The as-prepared powders were characterized by transmission electron microscopy (TEM) and analyzed by X-ray diffraction (XRD). The photocatalytic behavior of the TiO2-base surfaces was evaluated by the degradation of nitrogen monoxide gas. It suggested that CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were composed of anatase titania and that CaAl2O4:Eu2+, Nd3+. TiO2 particles were deposited on the surface of CaAl2O4:Eu2+, Nd3+ to form uniform film. CaAl2O4:Eu2+, Nd3+@TiO2 composite powders exhibited higher photocatalytic activity compared with pure TiO2 under visible light. And the result also clearly indicated that the long afterglow phosphor absorbed and stored lights for the TiO2 to remain photocatalytic activity in the dark.  相似文献   

11.
Bi2FeVO7 was prepared by a solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi2FeVO7 were studied. The results shows that this compound crystallized in the tetragonal crystal system with space group I4/mmm. Moreover, the band gap of Bi2FeVO7 was estimated to be about 2.22(6) eV. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2FeVO7 as the photocatalyst by ultraviolet light irradiation. Degradation of aqueous methylene blue (MB) dye by photocatalytic way over this compound was further studied under visible light irradiation. Bi2FeVO7 shows higher catalytic activity compared to TiO2 (P-25) for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was realized after visible light irradiation for 170 min with Bi2FeVO7 as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 revealed the continuous mineralization of aqueous MB during the photocatalytic course.  相似文献   

12.
Visible light-responsive TiO2 (Vis-TiO2) thin films able to absorb UV and visible light in wavelength regions of 250–600 nm were successfully developed by applying a radio-frequency magnetron sputtering deposition method. These Vis-TiO2 thin films exhibited high activity for the photocatalytic oxidation of 2-propanol diluted in water even under visible light irradiation (λ ≥ 450 nm). The photocatalytic activity of Vis-TiO2 thin films was dramatically enhanced by the deposition of Pt particles on the surface. Secondary ion mass spectrometry measurements revealed that Pt particles are distributed from the top surface to the deep bulk of Vis-TiO2 thin films with a columnar structure. The unique columnar structure of Vis-TiO2 thin films plays an important role in the high photocatalytic performance.  相似文献   

13.
Fe-doped TiO2 hollow spheres (Fe-THs) were synthesized by sol–gel process using carbon spheres as templates. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrum (DRS), N2 adsorption–desorption isotherms, Electron paramagnetic resonance (EPR) spectroscopy and Photoluminescence emission spectroscopy (PL). UV–vis spectra showed that Fe3+ doping could extend the absorption edge to the visible region. EPR spectra showed that Fe3+ was incorporated into the crystal lattice of TiO2, which could inhibit the recombination of photo-induced electron–hole pairs and improve the photocatalytic activity. The photocatalytic activities of the prepared samples were evaluated for the degradation of dye Reactive Brilliant Red X-3B (C.I. reactive red 2) under visible light irradiation. The results indicated that Fe3+ doping sample showed the highest photocatalytic activity with an optimal doping concentration of 0.50 wt%. The recycle ability of the Fe-THs was also investigated. After 5 cycles, the degradation rate was still higher than 90%, decreased by only 6.36% compared to the first cycle. Moreover, in order to characterize the electron-transferring efficiency in the process of photocatalysis reaction, a photocurrent-time spectrum was examined by anodic photocurrent response.  相似文献   

14.
S–N-codoped TiO2 powders have been synthesized through a facile one-step sol–gel method by using tetrabutyltitanate and thiourea as precursors. The S–N-codoped TiO2 treated at 500 °C showed the highest photocatalytic activity for degrading methylene blue under visible light irradiation. XRD, XPS and UV–vis studies revealed that the high visible-light photocatalytic activity of the doped TiO2 may originate from the synergetic effect of sulfur and nitrogen codoping into TiO2.  相似文献   

15.
Bi-doped nano-crystalline TiO2 (Bi–TiO2) has been synthesized by sonocrystallization at low temperature. The Bi–TiO2 materials have narrower bandgaps than pristine TiO2, which endow them with significant visible light absorption. Accordingly, these materials had enhanced photocatalytic activity in the degradation of organic dye pollutants and the cyanotoxin microcystin-LR (MC-LR) under visible irradiation. It was found that degradation of MC-LR is rather efficient. After irradiation with visible light for 12 h the original MC-LR was removed completely, and 78% of the organic carbon was mineralized into CO2 after irradiation for 20 h. The hydroxyl radical (·OH) is the major active species responsible for the degradation reaction. Identified intermediates primarily originate from attack of ·OH radicals on the double bonds between C4 and C5 (C6 and C7) of Adda and the ethylenic bond of Mdha in MC-LR. Some peptide bonds are also broken with longer irradiation time.  相似文献   

16.
The photo-degradation of formaldehyde (HCHO) by nitrogen-doped nanocrystalline TiO2 (N-TiO2) powders under visible light irradiation has been systematically investigated. Experimental results show that the degradation ratio reached up to 42.6% after 2 h visible light irradiation when the amounts of N-TiO2 powders were 0.5 g, the initial concentration of the HCHO was set at 0.98 mg/m3, the illumination intensity was fixed at 10,000 lux, the ambient temperature was set at 26 °C, and the relative humidity was maintained at 33 ± 5%. Further research shows that the degradation ratios were all larger than 40% in ten repeated cycles of photodegradation of HCHO by N-TiO2 powders. The degradation ratio was as high as 82.9% after 2 h visible light irradiation when the amount of N-TiO2 was 5 g. The degradation ratio was increased from 25.5 to 59.6% when the illumination intensity of the visible light was increased from 0 to 30,000 lux. However, the degradation ratio could not be further increased by further increasing the illumination intensity.  相似文献   

17.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

18.
The rare-earth orthoferrites RFeO3 (R, rare-earth element) crystallize in an orthorhombic distorted perovskite structure. RFeO3 compounds exhibit interesting physical and chemical properties because of their ionic and electronic defects. Polycrystalline nano-sized RFeO3 powders were synthesized by the sol–gel combustion method. X-ray powder diffraction indicated that nanocrystalline powders were single ReFeO3 phase, which are agglomerated with average crystallite size of 60–90 nm estimated with the Scherrer’s equation. Magnetic measurements were carried out using a superconducting quantum interference device magnetometer. The influence on hysteresis curve of electronic structure of rare-earth element was investigated for R = Y, La and Nd. Varied magnetic behaviors were observed in these compounds, which are believed to be associated with the different interactions of Fe and rare earths.  相似文献   

19.
The successful application of ion engineering techniques for the development of TiO2 photocatalysts operating under visible and/or solar light irradiations has been summarized in this review article. First, we have physically doped various transition metal ions within a TiO2 lattice on an atomic level by using an advanced metal ion implantation method. The metal ion implanted TiO2 could efficiently work as a photocatalyst under visible light irradiation. Some field tests under solar light irradiation clearly revealed that the Cr or V ions implanted TiO2 samples showed 2–3 times higher photocatalytic reactivity than the un-implanted TiO2. Second, we have developed the visible light responsive TiO2 thin film photocatalyst by a single process using an RF-magnetron sputtering (RF-MS) deposition method. The vis-type TiO2 thin films showed high photocatalytic reactivity for various reactions such as reduction of NOx, degradation of organic compounds, and splitting of H2O under visible and/or solar light irradiations.  相似文献   

20.
During chemical vapor synthesis of TiO2 nanopowders, nitrogen atoms were doped into the crystal lattice of TiO2. The nitrogen atoms were predominantly incorporated substitutionally in the crystal lattice of TiO2 nanopowders up to the doping level of 1.25 mol% nitrogen, whereas they were in both interstitial and substitutional sites over about 1.43 mol% nitrogen. From the photocatalytic activity of nitrogen-doped TiO2 estimated by decomposition of methylene blue under visible light, it was found that the substitutional nitrogen anions appearing at the low level doping was beneficial to its photocatalytic activity, whereas the interstitial ones appearing at the high level doping over 1.25 mol% nitrogen were not. The improved photocatalytic activity due to the substitutionally doped nitrogen was attributed to band gap narrowing which was confirmed by the studies of XPS, near edge X-ray absorption fine structure, and UV–Vis absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号