首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unambiguous X-ray crystallographic results of the carbene adduct of Sc(2)C(82) reveal a new carbide cluster metallofullerene with the unexpected C(2v)(5)-C(80) cage, that is, Sc(2)C(2)@C(2v)(5)-C(80). More interestingly, DFT calculations and NMR results disclose that the dynamic motion of the internal Sc(2)C(2) cluster depends strongly on temperature. At 293 K, the cluster is fixed inside the cage with two nonequivalent Sc atoms on the mirror plane, thereby leading to C(s) symmetry of the whole molecule. However, when the temperature increases to 413 K, the (13)C and (45)Sc NMR spectra show that the cluster rotates rapidly inside the C(2v)(5)-C(80) cage, featuring two equivalent Sc atoms and weaker metal-cage interactions.  相似文献   

2.
The dimetallic endohedral heterofullerene (EHF), Gd(2)@C(79)N, was prepared and isolated in a relatively high yield when compared with the earlier reported heterofullerene, Y(2)@C(79)N. Computational (DFT), chemical reactivity, Raman, and electrochemical studies all suggest that the purified Gd(2)@C(79)N, with the heterofullerene cage, (C(79)N)(5-) has comparable stability with other better known isoelectronic metallofullerene (C(80))(6-) cage species (e.g., Gd(3)N@C(80)). These results describe an exceptionally stable paramagnetic molecule with low chemical reactivity with the unpaired electron spin density localized on the internal diatomic gadolinium cluster and not on the heterofullerene cage. EPR studies confirm that the spin state of Gd(2)@C(79)N is characterized by a half-integer spin quantum number of S = 15/2. The spin (S = ?) on the N atom of the fullerene cage and two octet spins (S = 7/2) of two encapsulated gadoliniums are coupled with each other in a ferromagnetic manner with a small zero-field splitting parameter D. Because the central line of Gd(2)@C(79)N is due to the Kramer's doublet with a half-integer spin quantum number of S = 15/2, this relatively sharp line is prominent and the anisotropic nature of the line is weak. Interestingly, in contrast with most Gd(3+) ion environments, the central EPR line (g = 1.978) is observable even at room temperature in a toluene solution. Finally, we report the first EHF derivative, a diethyl bromomalonate monoadduct of Gd(2)@C(79)N, which was prepared and isolated via a modified Bingel-Hirsch reaction.  相似文献   

3.
X-ray analyses of the cocrystals of a series of carbide cluster metallofullerenes Sc(2)C(2)@C(2n) (n = 40-42) with cobalt(II) octaethylporphyrin present new insights into the molecular structures and cluster-cage interactions of these less-explored species. Along with the unambiguous identification of the cage structures for the three isomers of Sc(2)C(2)@C(2v)(5)-C(80), Sc(2)C(2)@C(3v)(8)-C(82), and Sc(2)C(2)@D(2d)(23)-C(84), a clear correlation between the cluster strain and cage size is observed in this series: Sc-Sc distances and dihedral angles of the bent cluster increase along with cage expansion, indicating that the bending strain within the cluster makes it pursue a planar structure to the greatest degree possible. However, the C-C distances within Sc(2)C(2) remain unchanged when the cage expands, perhaps because of the unusual bent structure of the cluster, preventing contact between the cage and the C(2) unit. Moreover, analyses revealed that larger cages provide more space for the cluster to rotate. The preferential formation of cluster endohedral metallofullerenes for scandium might be associated with its small ionic radius and the strong coordination ability as well.  相似文献   

4.
The X-ray crystal structure of (Isomer 2 of Er2@C82). NiII(OEP).2(benzene) shows that the fullerene cage in Isomer 2 of Er2@C82 is the C3v isomer (82:8) and that the erbium ions are distributed over 23 interior sites with occupancies ranging from 0.25 to 0.03.  相似文献   

5.
The La2@C72 metallofullerene having the so-called "missing" C72 fullerene cage was structurally elucidated by using 13C NMR and 139La NMR spectroscopy. The obtained structure of La2@C72 does not satisfy fullerene's structural golden rule, that is, the isolated-pentagon rule. The structure is consistent with a non-IPR D2-C72 (#10611) cage structure where each La atom is situated close to one of the two-fused pentagons.  相似文献   

6.
Although Sc2C84 has been widely believed to have the form Sc2@C84, the present 13C NMR study reveals that it is a scandium carbide metallofullerene, Sc2C2@C82, which has a C82(C(3v)) cage.  相似文献   

7.
Polarised IR and Raman spectra for KH2PO3 single crystal samples were measured at room temperature. Additionally, the IR spectra for the Xb(Z) sample were also measured at low temperatures (300–14 K). The spectra are discussed on the basis of oriented gas model and group theory. The stretching νOH vibrations of the hydrogen bonds with the OO distances of 2.547 and 2.529 Å give characteristic broad ABC-type bands in the IR (polarised parallel to the X and to the b(Z) directions) and Raman (xx, xz and yx) spectra. The Davydov-type (correlation field or factor group) splitting is not observed for the νOH modes. The presence of two independent hydrogen bonds in the crystal is manifested by splitting of the C band into two (C′, C″) components and by the different frequencies of the out-of-plane bending γOH vibrations. The in-plane bending modes δOH are strongly mixed/coupled with the stretching vibrations of the PO3 groups.

The C bands (C′ and C″) change into quite sharp bands on lowering of the temperature. Various simplified models for internal vibrations of the phosphite anions are applied for finding a correlation between the crystal structure and polarised vibrational spectra. The stretching vibrations of the νPH groups manifest their unequivalence in two symmetry-independent hydrogenphosphite anions.  相似文献   


8.
The structure of one of the three previously separated isomers of {Er2@C82} has been determined through a single-crystal X-ray structure determination of the noncovalent adduct, {Er2@C82 Isomer I}.{CoII(OEP)}.1.4(C6H6).0.3(CHCl3). The C82 cage is identified specificlly as the Cs(82:6) isomer (one of nine possible isolated pentagon isomers) from the crystallographic data. The carbon atoms of the C82 cage were individually identified and refined with only a constraint that required the two halves of the cage to possess similar bond lengths. Although the carbon cage is well ordered at 113 K, the erbium atoms are disordered. The electron density within the cage of {Er2@C82 Isomer I} has been modeled with two major sites with occupancies of 0.35 and 21 other individual erbium sites with occupancies ranging from 0.138 to 0.011. These erbium sites all reside near the walls of the fullerence and cluster near a band of ten contiguous hexagons that encircles the carbon cage. Since two other isomers of C82 (C3v(82:8) and C2v(82:9)) have a similar band of ten contiguous hexagons, it is tempting to speculate that the other two known isomers of {Er2@C82} have these cage structures.  相似文献   

9.
Electron paramagnetic resonance (EPR) studies have been carried out on Mn2+ ions doped in zinc malate trihydrate single crystals in the temperature range 123-413 K on X-band frequency. The EPR spectrum at room temperature exhibits a group of five fine structure transitions each splits into six hyperfine components. Angular variation studies reveal that Mn2+ ions enter the lattice substitutionally. From the observed EPR spectrum, the spin-Hamiltonian parameters have been evaluated. The variation of zero-field splitting parameter (D) with temperature is measured. From the optical absorption spectrum, the crystal field splitting parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The infrared spectrum exhibits bands characteristic of the carboxylic acid salts.  相似文献   

10.
Rock solid: Fullerene-encapsulated Li(+) (Li(+) @C(60) ) is an alkaline cation owing to the spherical shape and positive charge. Li(+) @C(60) crystallizes as a rock-salt-type crystal in the presence of PF(6) (-) . The orientations of C(60) and PF(6) (-) (orange) are perfectly ordered below 370?K, and Li(+) (purple) hops within the cage. At temperatures below 100?K two Li(+) units are localized at two polar positions within each C(60) .  相似文献   

11.
For unusual e(2)@C(60)F(60)(I(h), D(6h), and D(5d)) cage structures with two excess electrons, it is reported that not only the lone pair in singlet state but also two single excess electrons in triplet state can be encapsulated inside the C(60)F(60) cages to form single molecular solvated dielectrons. The interesting relationship between the shape of the cage and the spin state of the system has revealed that ground states are singlet state for spherical shaped e(2)@C(60)F(60)(I(h)) and triplet states for short capsular shaped e(2)@C(60)F(60)(D(6h)) and long capsular shaped e(2)@C(60)F(60)(D(5d)), which shows a spin evolution from the singlet to triplet state with the deformation of the cage from spherical to capsular shape. For these excess electron systems, the three ground state structures have large vertical electron detachment energies (VDEs (I) of 1.720-2.283 eV and VDEs (II) of 3.959-5.288 eV), which shows their stabilities and suggests that the large C(60)F(60) cage is the efficient container of excess electrons.  相似文献   

12.
We show by means of density functional calculations that the previously synthesized metallofullerene Ti2C80 does not take the form of Ti2@C80, but is a titanium carbide endohedral metallofullerene, Ti2C2@C78, that has a C78(6-)(D3h) cage which follows faithfully the stable closed-shell electronic rule.  相似文献   

13.
A new metallofullerene, La2@C78, has been synthesized by DC arc discharge method, isolated by high-performance liquid chromatography, and characterized by laser desorption time-of-flight mass spectrometry, UV-vis-NIR absorption, differential pulse voltammetry, 13C NMR spectroscopy, and theoretical calculations. The La2@C78/CS2 solution is dark violet and presents several characteristic absorption features at 647, 561, 533, and 386 nm, with an onset around 1000 nm. With respect to empty D3-C78, the capability of La2@C78 as an electron acceptor or donor is stronger. Addition of 1,1,2,2-tetrakis(2,4,6-trimethylphenyl)-1,2-disirane to La2@C78 photochemically, as well as thermally, affords bis- and mono-adducts. Theoretical studies and 13C NMR spectroscopic analysis of La2@C78 indicate that it possesses a D3h-C78 cage (78:5).  相似文献   

14.
Thermal and photochemical reactions of La2@C78 with 2-admantane-2,3-[3H]-diazirine are investigated. Four isomers of the monoadduct (La2@C78Ad) synthesized by the photoreaction are isolated by HPLC and characterized by mass, UV-vis-NIR absorption, cyclic voltammogram and differential pulse voltammogram spectroscopy, proton and 13C NMR spectroscopic analysis, single-crystal X-ray diffraction analysis, and theoretical approaches. The addition reactions occur at both the [5,6] and [6,6] positions. X-ray and theoretical studies indicate that one of the monoadduct isomers has an open structure with two La atoms on the C3 axis of the D3h cage of La2@C78.  相似文献   

15.
The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.  相似文献   

16.
A Sc(2)C(84) isomer, previously assumed to be Sc(2)@C(84), is unambiguously identified as a new carbide cluster metallofullerene Sc(2)C(2)@C(s)(6)-C(82) using both NMR spectroscopy and X-ray crystallography. The (13)C-nuclei signal of the internal C(2)-unit was observed at 244.4 ppm with a 15% (13)C-enriched sample. Temperature-dependent dynamic motion of the internal Sc(2)C(2) cluster is also revealed with NMR spectrometry. Moreover, the chemical property of Sc(2)C(2)@C(s)(6)-C(82) is investigated for the first time using 3-triphenylmethyl-5-oxazolidinone (1) which provides a 1,3-dipolar reagent under heating. Regarding the low cage symmetry of this endohedral which contains 44 types of nonequivalent cage carbons, it is surprising to find that only one monoadduct isomer is formed in the reaction. Single-crystal X-ray results of the isolated pyrrolidino derivative Sc(2)C(2)@C(s)(6)-C(82)N(CH(2))(2)Trt (2) reveal that the addition takes place at a [6,6]-bond junction, which is far from either of the two Sc atoms. Such a highly regioselective addition pattern can be reasonably interpreted by analyzing the frontier molecular orbitals of the endohedral. Electronic and electrochemical investigations reveal that adduct 2 has a larger highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap than pristine Sc(2)C(2)@C(s)(6)-C(82); accordingly, it is more stable.  相似文献   

17.
For the first time, HF-EPR (94.5 GHz) spectroscopy has been used to determine crystal field parameters in chromium(III) coordination compounds. The large zero-field splitting parameters of the dark-green photochromic trans-RSSR-[CrCl(2)(cyclam)](2)ZnCl(4), 1, the red-purple trans-RSSR-[CrCl(2)(cyclam)]Cl, 2, and the red-purple trans-RSSR-[CrCl(2)(cyclam)]Cl.4H(2)O.0.5HCl, 3, where cyclam = 1,4,8,11-tetraazacyclotetradecane, have been obtained. A full analysis of EPR spectra at 94.5 GHz of diluted complexes 1, 2 and 3 at 300 K revealed that they are extremely sensitive to D and E values. The rhombic distortion was precisely determined for each compound. For 1, g= 2.01, D=-0.305 cm(-1), E= 0.041 cm(-1) and lambda=|E/D|= 0.1396; for 2, g= 2.01; D=-0.348 cm(-1), E= 0.042 cm(-1) and lambda=|E/D|= 0.1206 and for 3, g= 1.99, D=-0.320 cm(-1), E= 0.041 cm(-1) and ambda=|E/D|= 0.1281. The EPR study at 94.5 GHz at 10 K allowed us to confirm the sign of the D value for all compounds. These data indicate that at room temperature the crystal field is mainly rhombic and as the temperature decreases, the rhombicity of the D tensor increases slightly. These found differences between 1, 2 and 3 allowed us to establish the importance of the intermolecular interactions in the solid state due to different hydrogen bonding networks in their crystalline arrangement.  相似文献   

18.
Fullerenes violating the isolated pentagon rule (IPR) are only obtained in the form of their derivatives. Since the [5,5]-bond carbons are highly reactive, they are easily attacked by reagents to release the bond strains. Non-IPR endohedral metallofullerenes, however, still have unsaturated sp (2) carbons at the [5,5] bond junctions, which allow their chemical properties to be probed. In this work, La 2@C 72 was chosen as a representative non-IPR metallofullerene, since it has been experimentally proposed to have either the #10611 or #10958 non-IPR cage structure ( J. Am. Chem. Soc. 2003, 125, 7782 ), while theoretical calculations have suggested that the #10611 cage is more stable ( J. Phys. Chem. A 2006, 110, 2231 ). La 2@C 72 was modified by photolytic reaction with the carbene reagent 2-adamantane-2,3-[3H]-diazirine. Six isomers of adamantylidene monoadducts were isolated and characterized using various kinds of measurements, including high-performance liquid chromatography, matrix-assisted laser desorption ionization mass spectrometry, UV-vis-near-infrared spectroscopy, cyclic voltammetry, differential-pulse voltammetry, (13)C NMR spectroscopy, and single-crystal X-ray diffraction. Electronic spectra and electrochemical studies revealed that the essential electronic structures of La 2@C 72 are retained in the six isomers and the adamantylidene group acts as a weak electron-donating group toward La 2@C 72. X-ray structural results unambiguously elucidated that La 2@C 72 has the #10611 chiral cage (i.e., D 2 symmetry) with two pairs of fused pentagons at each pole of the cage and that the two La atoms reside close to the two fused-pentagon pairs. On the basis of these results and theoretical calculations, it is concluded that the fused-pentagon sites are very reactive toward carbene but that the carbons forming the [5,5] junctions are less reactive than the adjacent ones; this confirms that these carbons interact strongly with the encaged metals and thus are stabilized by them.  相似文献   

19.
Cover Picture     
The cover picture shows a section of the electron charge density of the first metal carbide endohedral metallofullerene (Sc(2)C(2))@C(84) obtained from a synchrotron X-ray powder diffraction study by the maximum entropy method (MEM). The several density maxima, which correspond to scandium and carbon atoms, are clearly seen inside the C(84) carbon cage. The MEM charge density distribution also reveals that the C(84) cage has D(2d) symmetry (no. 23) and that the C(2) axis is parallel to the <100> face-centered cubic (fcc) direction of the unit cell. As a consequence of the site symmetry being 4mm, the C(2) axis of (Sc(2)C(2))@C(84) is oriented to six equivalent <100> directions and shows a merohedral disorder. The resultant Sc small middle dot small middle dot small middle dotSc distances and C-C bond lengths of the Sc(2)C(2) cluster are 0.429(2) and 0.142(6) nm, respectively. The observed C-C bond length is between that of a typical single and a double bond, and is very close to that of the C-C bond (0.143 nm) combining two pentagons in a C(60) molecule. More about this fascinating structure can be found in the contribution by Shinohara and co-workers on p. 397 ff.  相似文献   

20.
We analyze the electronic structure of carbide endohedral metallofullerenes of the type Sc(2)C(2)@C(82) and study the possibility of rotation of the encapsulated Sc(2)C(2) moiety in the interior of the cage. Moreover, we rationalize the higher abundance of M(2)C(2)@C(82) (M = Sc, Y) in which the metal-carbide cluster is encapsulated in the C(3v)-C(82):8 carbon cage with respect to other carbides of the same family on the basis of the formal transfer of four electrons from the cluster to the cage and sizeable (LUMO-3)-(LUMO-2) gap in the empty cages. This rule also applies to all those endohedral metallofullerenes in which the encapsulated cluster transfers four electrons to the carbon cage as, for example, the reduced [M@C(82)](-) systems (M = group 3 or lanthanide metal ion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号