首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the sum S of the Legendre symbols of a polynomial of odd degree n ≥ 3 modulo primes p ≥ 3, Weil’s estimate |S| ≤ (n ? 1) $ \sqrt p $ and Korobov’s estimate $$ \left| S \right| \leqslant (n - 1)\sqrt {p - \frac{{(n - 3)(n - 4)}} {4}} forp \geqslant \frac{{n^2 + 9}} {2} $$ are well known. In this paper, we prove a stronger estimate, namely, $$ \left| S \right| < (n - 1)\sqrt {p - \frac{{(n - 3)(n + 1)}} {4}} $$ .  相似文献   

2.
Говорят, что ряд \(\mathop \sum \limits_{k = 0}^\infty a_k \) сумм ируется к s в смысле (С, gа), gа >?1, если $$\sigma _n^{(k)} - s = o(1),n \to \infty ,$$ в смысле [C,α] λ , α<0, λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {\sigma _k^{(\alpha - 1)} - s} \right|^\lambda = o(1),n \to \infty ,$$ и в смысле [C,0] λ , λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {(k + 1)(s_k - 1) - k(s_{k - 1} - 1)} \right|^\lambda = o(1),n \to \infty ,$$ где σ n (α) обозначаетn-ое ч езаровское среднее р яда. Суммируемость [C,α] λ , α>?1, λ ≧1 о значает, что $$\mathop \sum \limits_{k = 0}^\infty k^{\lambda - 1} \left| {\sigma _k^{(\alpha )} - \sigma _{k - 1}^{(\alpha )} } \right|^\lambda< \infty .$$ В данной статье содер жится продолжение ис следований свойств [C,α] λ -суммиру емо сти, которые начали Винн, Х ислоп, Флетт, Танович-М иллер и автор, в частности свя зей между указанными методами суммирования. Наконец, даны некотор ые простые приложени я к вопросам суммируемости ортог ональных рядов.  相似文献   

3.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

4.
For the coefficients bn of an odd function \(f(z) = z + \sum\nolimits_{k = 1}^\infty {{}^bk^{z^{2k + 1} } } \) , regular in the unit disk, we obtain the estimate $$|b_n | \leqslant \frac{1}{{\sqrt 2 }}\sqrt {1 + |b_1 |^2 } \exp \frac{1}{2}\left( {\delta + \frac{1}{2}|b_1 |^2 } \right),where \delta = 0.312,$$ (1) from which it follows that ¦bn¦≤1, if ¦b1¦≤0.524. It follows from (1) that the coefficients cn, n = 3, 4,..., of a regular function \(f(2) = z + \sum\nolimits_{k = 2}^\infty {{}^ck^{z^k } } \) , univalent in the unit desk, satisfy $$|c_n | \leqslant \frac{1}{2}\left( {1 + \frac{{|c_2 |^2 }}{4}} \right)n\exp \left( {\delta + \frac{{|c_2 |^2 }}{8}} \right),where \delta = 0.312,$$ in particular, ¦cn¦≤n, if ¦c2¦≤1.046.  相似文献   

5.
The following theorem is provedTheorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying inthe interval[-1,1] and△'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}.If polynomial pP_n satisfies the inequalitythen for each k=1,n and any x[-1,1]its k-th derivative satisfies the inequality丨p~(k)(x)丨≤max{丨q~((k))(x)丨,丨1/k(x~2-1)q~(k+1)(x)+xq~((k))(x)丨}.This estimate leads to the Markov inequality for the higher order derivatives ofpolynomials if we set q=T_n,where Tn is Chebyshev polynomial least deviated from zero.Some other results are established which gives evidence to the conjecture that under theconditions of Theorem 1 the inequality ‖p~((k))‖≤‖q~(k)‖holds.  相似文献   

6.
Chebyshev determined $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n + a_1 x^{n - 1} + \cdots + a_n |$$ as 21?n , which is attained when the polynomial is 21?n T n(x), whereT n(x) = cos(n arc cosx). Zolotarev's First Problem is to determine $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n - n\sigma x^{n - 1} + a_2 x^{n - 2} + \cdots + a_n |$$ as a function ofn and the parameter σ and to find the extremal polynomials. He solved this in 1878. Another discussion was given by Achieser in 1928, and another by Erdös and Szegö in 1942. The case when 0≤|σ|≤ tan2(π/2n) is quite simple, but that for |σ|> tan2(π/2n) is quite different and very complicated. We give two new versions of the proof and discuss the change in character of the solution. Both make use of the Equal Ripple Theorem.  相似文献   

7.
The energy of a graph is defined as the sum of the absolute values of all eigenvalues of the graph. A tree is said to be non-starlike if it has at least two vertices with degree more than 2. A caterpillar is a tree in which a removal of all pendent vertices makes a path. Let $\mathcal{T}_{n,d}$ , $\mathbb{T}_{n,p}$ be the set of all trees of order n with diameter d, p pendent vertices respectively. In this paper, we investigate the relations on the ordering of trees and non-starlike trees by minimal energies between $\mathcal{T}_{n,d}$ and $\mathbb{T}_{n,n-d+1}$ . We first show that the first two trees (non-starlike trees, resp.) with minimal energies in $\mathcal{T}_{n,d}$ and $\mathbb{T}_{n,n-d+1}$ are the same for 3≤dn?2 (3≤dn?3, resp.). Then we obtain that the trees with third-minimal energy in $\mathcal{T}_{n,d}$ and $\mathbb{T}_{n,n-d+1}$ are the same when n≥11, 3≤dn?2 and d≠8; and the tree with third-minimal energy in $\mathcal{T}_{n,8}$ is the caterpillar with third-minimal energy in $\mathbb{T}_{n,n-7}$ for n≥11.  相似文献   

8.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

9.
LetK be a quadratic number field with discriminantD and denote byF(n) the number of integral ideals with norm equal ton. Forr≥1 the following formula is proved $$\sum\limits_{n \leqslant x} {F(n)F(n + r) = M_K (r)x + E_K (x,r).} $$ HereM k (r) is an explicitly determined function ofr which depends onK, and for every ε>0 the error term is bounded by \(|E_K (x,r)|<< |D|^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2} + \varepsilon } x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6} + \varepsilon } \) uniformly for \(r<< |D|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6}} \) Moreover,E k (x,r) is small on average, i.e \(\int_X^{2X} {|E_K (x,r)|^2 dx}<< |D|^{4 + \varepsilon } X^{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2} + \varepsilon } \) uniformly for \(r<< |D|X^{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0em} 4}} \) .  相似文献   

10.
The purpose of this paper is to prove that for a large set of absolute Hausdorff and quasi-Hausdorff methods the condition $$\sum\limits_{k = 1}^\infty {\left| {\lambda _n a_n - \lambda _{n - 1} a_{n - 1} } \right|< } \infty $$ is a Tauberian condition, i.e., its fulfillment together with the absolute summability of \(\sum\limits_{n = 0}^\infty {a_n } \) tos implies that \(\sum\limits_{n = 0}^\infty {\left| {a_n } \right|}< \infty \) and \(\sum\limits_{n = 0}^\infty {a_n } = s.\) a n =s.  相似文献   

11.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

12.
It is shown that any graph onn vertices containing no clique and no independent set ont + 1 vertices has at least $$2^{{n \mathord{\left/ {\vphantom {n {(2t^{20 \log (2t)} )}}} \right. \kern-\nulldelimiterspace} {(2t^{20 \log (2t)} )}}} $$ distinct induced subgraphs.  相似文献   

13.
We prove the main theorems of scattering theory for selfadjoint elliptic partial differential operators of arbitrary order. Under various hypotheses we show that the wave operators exist and are complete, that the intertwining relations hold, and that the invariance principle holds. One of our main hypotheses is that each lower order coefficientq(x) satisfies. $$(1 + \left| x \right|)^\alpha \int\limits_{\left| {x - y} \right|< a} {\left| {q(y)} \right|dy \in L^p (E^n )}$$ for some α≥0,a>0 and forp≤∞ such that $$\alpha > 1 - \frac{{2n}}{{(n + 1)p}}$$   相似文献   

14.
A multidimensional continued fraction algorithm is a generalization of the ordinary continued fraction algorithm which approximates a vector η=(y 1,...,y n ) by a sequence of vectors \(\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right)\) . If 1,y 1,...,y n are linearly independent over the rationals, then we say that the expansion of η isstrongly convergent if $$\mathop {\lim }\limits_{j \to \infty } \left| {\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right) - \eta } \right| = 0.$$ This means that the algorithm converges at an asymptotically faster rate than would be guaranteed just by picking a denominator at random. The ordinary continued fraction algorithm can be defined using the Farey sequence, approximating a number by the endpoints of intervals which contain it. Analogously, we can define a Farey netF n, m to be a triangulation of the set of all vectors \(\left( {\frac{{a_1 }}{{a_{n + 1} }}, \ldots ,\frac{{a_n }}{{a_{n + 1} }}} \right)\) witha n+1 ≤m into simplices of determinant ±1, and use this algorithm to define a multidimensional continued fraction for η in which the approximations are the vertices of the simplices containing η in a sequence of Farey nets. The concept of a Farey net was proposed by A. Hurwitz, and R. Mönkemeyer developed a specific continued fraction algorithm based on it. We show that Mönkemeyer's algorithm discovers dependencies among the coordinates of η in two dimensions, but that no continued fraction algorithm based on Farey nets can discover dependencies in three or more dimensions, and none can be strongly convergent, even in two dimensions. Thus there are no good multidimensional algorithms based on Farey nets.  相似文献   

15.
LetG = (V, E) be a simple graph withn vertices and e edges. Letdi be the degree of the ith vertex vi ∈ V andm i the average of the degrees of the vertices adjacent to vertexv i ∈ V. It is known by Caen [1] and Das [2] that $\frac{{4e^2 }}{n} \leqslant d_1^2 + ... + d_n^2 \leqslant e max \{ d_j + m_j |v_j \in V\} \leqslant e\left( {\frac{{2e}}{{n - 1}} + n - 2} \right)$ . In general, the equalities do not hold in above inequality. It is shown that a graphG is regular if and only if $\frac{{4e^2 }}{n} = d_1^2 + ... + d_n^2 $ . In fact, it is shown a little bit more strong result that a graphG is regular if and only if $\frac{{4e^2 }}{n} = d_1^2 + ... + d_n^2 = e max \{ d_j + m_j |v_j \in V\} $ . For a graphG withn < 2 vertices, it is shown that G is a complete graphK n if and only if $\frac{{4e^2 }}{n} = d_1^2 + ... + d_n^2 = e max \{ d_j + m_j |v_j \in V\} = e\left( {\frac{{2e}}{{n - 1}} + n - 2} \right)$ .  相似文献   

16.
We obtain a sharp Remez inequality for the trigonometric polynomial T n of degree n on [0,2π): $$\|T_n \|_{L_\infty([0,2\pi))} \le \biggl(1+2\tan^2 \frac{n\beta}{4m} \biggr) { \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}, $$ where $\frac{2\pi}{m}$ is the minimal period of T n and $|B|=\beta<\frac {2\pi m}{n}$ is a measurable subset of $\mathbb {T}$ . In particular, this gives the asymptotics of the sharp constant in the Remez inequality: for a fixed n, $$\mathcal{C}(n, \beta)=1+ \frac{(n\beta)^2}{8} +O \bigl(\beta^4\bigr), \quad\beta \to0, $$ where $$\mathcal{C}(n,\beta):= \sup_{|B|=\beta}\sup_{T_n} \frac{ \|T_n \|_{L_\infty([0,2\pi ))}}{ \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}. $$ We also obtain sharp Nikol’skii’s inequalities for the Lorentz spaces and net spaces. Multidimensional variants of Remez and Nikol’skii’s inequalities are investigated.  相似文献   

17.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

18.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

19.
20.
Let F(Z) be a cusp form of integral weight k relative to the Siegel modular group Spn(Z) and let f(N) be its Fourier coefficient with index N. Making use of Rankin's convolution, one proves the estimate (1) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{2}\delta (n)} ),$$ where $$\delta (n) = \frac{{n + 1}}{{\left( {n + 1} \right)\left( {2n + \tfrac{{1 + ( - 1)^n }}{2}} \right) + 1}}.$$ Previously, for n ≥ 2 one has known Raghavan's estimate $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2}} )$$ In the case n=2, Kitaoka has obtained a result, sharper than (1), namely: (2) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{4} + \varepsilon } ).$$ At the end of the paper one investigates specially the case n=2. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of f(N), n=2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号