首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photolysis and thermolysis of the Cyclopropyl silyl ketones 3, 4 , and 5 are described. On n,π* excitation, the silyl ketones 3 and 4 undergo a Norrish-type-II reaction involving γ-H abstraction, cyclopropyl ring cleavage followed by retro-enolization to the acylsilanes 6 and (E/Z)- 12 , respectively. As a common product of 3 and 4 , the dihydrofuran 7 is formed via the alternative C(α)-C(β) cleavage of the cyclopropyl moiety. Compounds 6 , 7 , and (E/Z)- 12 are new types of acylsilane photoproducts. The irradiation of acylsilane 5 gave the analogous dihydrofuran 15 as the only product. On photolysis of 3 and 4 , products 8A + B and 13A + B , derived from a siloxy carbene intermediate, were found as well. On thermolysis of 3 and 4 , the acylsilanes 6 (80%), and (E)- 12 (33%) and (Z)- 12 (34%), respectively, are formed as the only products. Their formation may occur via a [1, 5] sigmatropic H-shift. The thermolysis of 5 gave the diene 16 whose formation can be explained by insertion of a siloxycarbene into the neighboring cyclopropane leading to the cyclobutene 28 as thermally unstable intermediate.  相似文献   

2.
The syntheses, photolyses, and thermolyses of the α,β-unsaturated silyl ketones (E/Z)-7, (E)- 8 , and (E)- 9 are described. On n,π*-excitation (λ > 347 mm), the aforementioned compounds undergo (E/Z)-isomerization followed by γ-H abstraction. The intermediate enols are trapped intermolecularly by siloxycarbenes leading to the dimeric acetals 27A + B, 30A + B , and 31A + B . In addition, the acylsilanes (E/Z)- 7 undergo photoisomerization by δ-H abstraction furnishing the acylsilanes 29A + B . Flash vacuum thermolyses (FVT) of (E/Z)- 7 , (E/Z)- 8 , and (E)- 9 give rise to intramolecular reactions of the siloxycarbene intermediates. Thus, FVT (520°) of (E)- and (Z)- 7 selectively leads to the enol silyl ethers 32 and (E)- 33 , respectively, arising from carbene insertion into an allylic C–-H bond. FVT of (E/Z)- 8 (560°) and (E)- 9 (600°) affords the trienol silyl ethers 34A + B and the cyclic silyl ethers 37A + B , respectively, which are formed by CH insertion of the siloxycarbenes. As further products of (E)- 8 and (E)- 9 , the bicyclic enol ethers 35 and 36 are formed, presumably via siloxycarbene addition to the cyclohexene C?C bond.  相似文献   

3.
The title compounds (E/Z)- 7 were prepared in 66% overall yield by reaction of β-ionone ((E)-( 1 ) with lithium dimethylcuprate, trapping of the intermediate enolate with benzeneselenenyl bromide and oxidation with H2O2. Analogously, (E/Z)-7-methyl-α-inone ((E/Z)- 12 ) was obtained in 65% yield from α-ionone ((E)- 11 ). 1n, π*- Excitation (λ > 347 nm, pentane) of (E)-7 causes rapid (E/Z)-isomerization and subsequent reaction of (Z)- 7 to 15 (66%). The formation of 15 is explained by twisting of the dienone chromophore due to repulsive interaction of the 7-CH3-group with the CH3-groups of the cyclohexene ring. On the other hand, irradiation λ > 347 nm, Et2O) of (E)- 7 in the presence of acid leads to (Z)- 7 (5%) and to the novel compound 16 (88%).  相似文献   

4.
Treatment of α,β‐unsaturated ketones with an electrophilic site at the γ‐position in the presence of trimethylsilyl cyanide with bis(iodozincio)methane afforded the (Z)‐silyl enol ether of the β‐cyclopropyl substituted ketone in good yields. The reaction proceeds by 1,4‐addition to form an enolate, and its sequential intramolecular nucleophilic attack to an adjacent electrophilic site. The reaction of γ‐ethoxycarbonyl‐α,β‐unsaturated ketone and bis(iodozincio)methane in the presence of trimethylsilyl cyanide afforded 1‐ethoxy‐1‐trimethylsiloxycyclopropane derivatives, which can be regarded as the homoenolate equivalent. Additionally, reaction of the obtained homoenolate equivalents with imines give 1‐(E)‐alkenyl‐2‐(1‐aminoalkyl)alkanols diastereoselectively.  相似文献   

5.
A Pd(dba)2–P(OEt)3 combination allowed the silastannation of arylacetylenes, 1‐hexyne or propargyl alcohols with tributyl(trimethylsilyl)stannane to take place at room temperature, producing (Z)‐2‐silyl‐1‐stannyl‐1‐substituted ethenes in high yields. Novel silyl(stannyl)ethenes were fully characterized by 1H‐, 13C‐, 29Si‐ and 119Sn‐NMR as well as infrared and mass analyses. Treatment of a series of (Z)‐1‐aryl‐2‐silyl‐1‐stannylethenes and (Z)‐1‐(3‐pyridyl)‐2‐silyl‐1‐stannylethene with hydrochloric acid or hydroiodic acid in the presence of tetraethylammonium chloride (TEACl) or tetrabutylammonium iodide (TBAI) led to the exclusive formation of (E)‐trimethyl(2‐arylethenyl)silanes with high stereoselectivity. A similar reaction of (Z)‐1‐(2‐anisyl)‐2‐silyl‐1‐stannylethene also produced E‐type trimethyl[2‐(2‐anisyl)ethenyl]silane, while (Z)‐trimethyl [2‐(2‐pyridyl)ethenyl]silane was produced exclusively from (Z)‐1‐(2‐pyridyl)‐2‐silyl‐1‐stannylethene. Protodestannylation of (Z)‐1‐[hydroxy(phenyl)methyl]‐2‐silyl‐1‐stannylethene with trifluoroacetic acid took place via the β‐elimination of hydroxystannane, providing trimethyl(3‐phenylpropa‐1,2‐dienyl)silane quite easily. The destannylation products were also fully characterized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The transformation of 36 bis(homoallylic) alcohols VII to alkenones IX and X via β-cleavage of their potassium alkoxides VIIa in HMPA has been investigated (cf. Scheme 2). These studies have established an order of β-cleavage for 2-propenyl, 1-methyl-2propenyl, 2-methyl-2-propenyl, 1,1-dimethyl-2propenyl, and benzyl groups in alkoxides 49a – 56a and have allowed a comparison between the β-cleavege reaction and the oxy-Cope rearrangement in alkoxides 74a – 83a . As illustrative syntheti applications, a two-step preparatio of propenyl ketones 15 – 42 from carboxylic esters is described, together with syntheses of ar-turmerone ( 48 ), α-damascone ((E)- 71 ), β-damascone ((E)- 109 ), and β-damascenone ((E)- 111 ).  相似文献   

7.
A convenient, novel synthesis of alkyl cyclopropyl ketones based on Z-1-bromo-1-alkenylboronate esters is developed. α-Bromo-(Z)-1-alkenylboronate esters readily available from literature procedures smoothly undergo a reaction with cyclopropylmagnesium bromide in tetrahydrofuran to provide the corresponding ‘ate’ complexes. These ‘ate’ complexes undergo intramolecular nucleophilic substitution reactions to provide the corresponding (E)-1-alkenylboronate esters containing cylcopropyl moiety for the first time in good isolated yields (68-82%). The carbon skeleton present in these intermediates is confirmed by oxidation with hydrogen peroxide and sodium acetate to afford the corresponding alkyl cyclopropyl ketones in good yields (72-85%).  相似文献   

8.
For the asymmetric isomerization of geranyl‐ or neryldiethylamine ((E)‐ or (Z)‐ 1 , resp.) and allyl alcohols geraniol or nerol ((E)‐ or (Z)‐ 2 , resp.) to citronellal ( 4 ) in the presence of a [RhI(ligand)cycloocta‐1,5‐diene)]+ catalyst, the atropic ligands 5 – 11 are compared under homogeneous and polymer‐supported conditions with the non‐C2‐symmetrical diphosphino ferrocene ligands 12 – 16 . The tBu‐josiphos ligand 13 or daniphos ligand 19 , available in both antipodal series, already catalyse the reaction of (E)‐ 1 at 20° (97% e.e.) and favourably compare with the binap ligand 5 (see Table 1). Silica‐gel‐ or polymer‐supported diphosphino ligands usually afford similar selectivity as compared to the corresponding ligands applied under homogeneous conditions, but are generally less reactive. In this context, a polymer‐supported ligand of interest is the polymer‐anchored binap (R)‐ 6 , in terms of reactivity, selectivity, and recoverability, with a turnover of more than 14400.  相似文献   

9.
The cyclopropanation reactions of α, β-epoxy diazomethyl ketones 1 with olefins using Pd(OAc)2 as catalyst is described. Differently substituted epoxy diazo ketones 1a-1f give with cyclohexene exo-norcarane derivatives. 3, 3-Diphenyloxiranyl-2 diazomethyl ketone 1a reacts with olefins like isobutene, E- and Z- butene-2 to give epoxy cyclopropyl ketones. 3, 3-Diphenyloxiranyl-2 cyclopropyl ketones 2a and 9 undergo two consecutive rearrangement reactions with BF3 as catalyst. In the first step an epoxide rearrangement of 9 takes place to give β-ketoaldehyde 10, which in a second step rearranges to enolester 12. The latter reaction is most likely restricted to β-ketoaldehydes which have a quaternary α-C atom. A rationale for this unusual reaction has been proposed.  相似文献   

10.
Treatment of cyclopropylsilylmethanols derived from cyclopropyl silyl ketones with acid catalyst gives the corresponding silyl-substituted homoallyl derivatives in high yields with good stereoselectivity, independent of the substituents on the cyclopropyl ring. Cyclopropylsilylmethanols having a n-, s-butyl or phenyl group on the carbinyl carbon react to afford the E-homoallyl derivatives selectively. On the other hand, the reaction of cyclopropylsilylmethanols having a tert-butyl group gives Z-isomers exclusively. The following protiodesilylation of the resulting homoallyl derivatives proceeds with retention of configuration.  相似文献   

11.
Hydroalumination‐brominolysis of vinylacetylenic alcohols 1 – 4 provides a novel entry to synthetically useful (E)‐ and (Z)‐bromoalkadienols, and bromoallenols, which are otherwise hardly accessible. An electrophilic cleavage of cyclic intermediate A follows competing mechanistic pathways, giving rise to isomeric (Z)‐bromodienols 5 – 8 and allenic alcohols 9 – 12 . The latter are stereoselectively converted to (E)‐bromoalkadienols 13 – 16 by CuBr‐catalyzed anionotropic rearrangement.  相似文献   

12.
To demonstrate the neighbouring-group participation of the 2-benzyloxy group in the glycosidation of phenols and of strongly acidic alcohols by the diazirine 1 , we examined the glycosidation of 4-nitrophenol, 4-methoxyphenol, (CF3)2CHOH, MeOH, and i-PrOH by the diazirine 11 , derived from the 2-deoxypyranose 6 . Oxidation of the oximes 7 yielded (E)- and (Z)- 8 . In solution, (E)- 8 isomerised to (Z)- 8 . Similarly, the (E)-configurated mesylate 9 , prepared from 8 , underwent acid-catalysed isomerisation to (Z)- 9 . Treatment of (Z)- 9 with NH3, followed by oxidation of the resulting diaziridine 10 with I2, yielded the desired diazirine 11 . Glycosidation by 11 of the above mentioned hydroxy compounds yielded the glycosides 12–21 . In agreement with the postulated neighbouring-group participation, these glycosidation proceeded without, or with a very low diastereoselectivity, favouring the axial anomers.  相似文献   

13.
Acetonitrile oxide reacts regioselectively with 3-buten-2-one and (E)-4-methoxy-3-buten-2-one to give 5-acetyl-2 and 4-acetyl-3-methylisoxazole 3, respectively. Treatment of ketones 2 and 3 with trimethylsilyl trifluoromethanesulfonate gave the silyl enol ethers 4 and 5, whereas the methyl enol ethers 8 and 9 were obtained via elimination of methanol from the corresponding dimethyl ketals.  相似文献   

14.
Sonogashira coupling of (E)-α-iodovinylsilanes 1 with (trimethylsilyl)-acetylene gave (Z)-1,3-bis(trimethylsilyl)alk-3-en-1-ynes 2, which underwent a desilylation reaction to afford (Z)-3-(trimethylsilyl)alk-3-en-1-ynes 3 in good yields. (1E,3Z)-1-Arylseleno-3-(trimethylsilyl)-substituted 1,3-dienes 5 could be synthesized stereoselectively via hydrozirconation of (Z)-3-(trimethylsilyl)alk-3-en-1-ynes 3, followed by trapping with arylselenenyl bromides.  相似文献   

15.
Yaku′amide B ( 1 ) inhibits cancer cell growth through a unique mechanism of action. Compound 1 binds to mitochondrial FoF1-ATP synthase, inhibits ATP production, and enhances ATP hydrolysis. The presence of one (E)- and two (Z)-α,β-dehydroisoleucines (ΔIle) in the linear 13-mer sequence is the most unusual structural feature of 1 . To uncover the biological importance of these residues, we synthesized 1 and its seven E/Z isomers 2 – 8 by devising a new divergent solid-phase strategy. Both the (E)- and (Z)-ΔIle residues were stereoselectively constructed by traceless Staudinger ligation on resin to ultimately deliver 1 – 8 . All isomers 2 – 8 displayed effects on the inhibition of cell growth and ATP production, and enhanced ATP hydrolysis, thus indicating that 2 – 8 share the same mode of action as 1 . The least potent isomer, 8 , was isomeric at three ΔIle residues of the most potent 1 . These findings together indicate that the E/Z stereochemistry of the three ΔIle residues controls the magnitude of the biological functions of 1 .  相似文献   

16.
Reduction of 1,2-Bis[(Z)-(2-nitrophenyl)-NNO-azoxy]benzene1: Synthesis of Cyclotrisazobenzene ( = (5E,6aZ,11E,12aZ,17E,18aZ)-5,6,11,12,17,18-Hexaazatribenzo[aei][1,3,5,7,9,11]cyclododeca-hexaene) Na2S reduction of 1,2-bis[(Z)-(2-nitrophenyl)-NNO-azoxy]benzene ( 2 ) yielded 3 deoxygenated products: the (known) red 2,2′-((E,E)-1,2-phenylenbisazo)dianiline ( 3 , 23%), the orange 2-[2-((E)-2-aminophenylazo)phenyl]-2H-benzotriazol ( 4 , 55%) and the colorless 2,2′-(1,2-phenylene)di-2H-benzotriazol ( 5 , 13%). The constitutions of 3 – 5 and of 6 , the N-acetyl derivative of 4 , were deduced from their 1H-NMR spectra (chemical shifts, couplings, and symmetry properties), and the configurations of 3 , 4 , and 6 at their N,N-double bonds are assumed to be the same as in 2 . Oxidation of 3 with 2 mol-equiv. of Pb(OAc)4 afforded 5 (47%) and a novel, highly symmetrical macrocycle, called cyclotrisazobenzene ( 7 , 24%). The constitution of 7 as a tribenzo-hexaaza[12]annulene and its (E)-configuration at the N,N-bonds was confirmed by X-ray analysis. The molecular symmetry expressed by the 1H-, 13C- and 15N-NMR spectra of 7 reveals a rapid torsional motion around the six N,C bonds. This implies that the N,N-double bonds in the cyclic 12π-electron system (or 24π-electron system if the benzene rings are included) of 7 are highly localized.  相似文献   

17.
Thermal (E), (Z)-Isomerizations of Substituted Propenylbenzenes The thermal isomerizations of (E)- and (Z)-3,5-dimethyl-2-(1′-propenyl)phenol ((E)- and (Z)- 3 ), (E)- and (Z)-N-methyl-2-(1′-propenyl)anilin ((E)- and (Z)- 4 ), (E)- and (Z)-3,5-dimethyl-2-(1′-propenyl)anilin ((E)- and (Z)- 5 , (E)- and (Z)-2-(1′-propenyl)mesitylene ((E)- and (Z- 6 ), (E)- and (Z)-2-(1′-propenyl)mesitylene ((E)- and (Z)- 7 ), (E)- and (Z)-2-(1′-propenyl)toluene ((E)- and (Z)- 8 ), (E)- and (Z)-4-(1′-propenyl)toulene ((E)- and (Z)- 9 ) as well as of (E)- and (Z)-2-(2′-butenyl)-mesitylene ((E)- and (Z)- 10 ) in decane solution were studied (Scheme 2). Whereas the isomerization of the 2-propenylphenols (E)- and (Z)- 3 occurs already between 130 and 150° (cf. Table 1), the isomerization of the 2-propenylanilins 4 and 5 takes place only at temperatures between 220 and 250° (cf. Tables 2 and 3). The activation values and the experiments using N-deuterated 4 (cf. Scheme 4) show that 2-propenylphenols and -anilins isomerize via sigmatropic [1,5]-hydrogen-shifts. For the isomerization of the methyl-substituted propenylbenzenes temperatures > 360° are required (cf. Tables 4 and 5). The activation values of the isomerization of (E)- and (Z)- 6 and (E)- and (Z)- 9 are in accord with those of other (E), (Z)-isomerizations which occur via vibrationally excited singlet biradicals (cf. Table 7). Nevertheless, thermal isomerization of 2′-d-(Z)- 8 (cf. Scheme 6) demonstrates that during the reaction deuterium is partially transfered into the ortho-methyl group, i.e. 1,5-hydrogen-shifts must have participated in isomerization of (E)- and (Z)- 8 (cf. Scheme 8). Under the equilibrium conditions 2,4,6-trimethylindan ( 17 ) is formed slowly at 368° from (E)- and (Z)- 6 , very probably via a radical 1,4-hydrogen-shift (cf. Scheme 9). In a similar way 2-ethyl-4,6-dimethylindan ( 19 ; cf. Table 6) arises from (E)- and (Z)- 7 . Thermolysis of (E)- and (Z)- 10 in decane solution at 367° results in almost no (E),(Z)-isomerization. At prolonged heating 19 and 2,5,7-trimethyl-1,2,3,4-tetrahydronaphthalene ( 20 ) are formed; these two products arise very likely from an intermolecular radical process (cf. Scheme 10).  相似文献   

18.
Kenta Takai 《Tetrahedron》2009,65(28):5596-5932
We developed an efficient, practical, and robust method for stereoselective preparations of (Z)-ketene trimethylsilyl (TMS) thioacetals from thioesters and alkyl (1Z)- or (1Z,3E)-1,3-bis(TMS)dienol ethers from alkyl β-ketoesters. The former preparation was performed by convenient procedure (LDA-TMSCl, 0-5 °C, 2.5 h), while the latter preparation involved convenient method A (2NaHMDS-2TMSCl) and cost-effective method B (NaH, NaHMDS-2TMSCl). The first catalytic NaOH-catalyzed crossed-Claisen condensation between ketene silyl acetals and methyl esters proceeded successfully to give a variety of α-monomethyl β-ketoesters and inaccessible α,α-disubstituted β-ketoesters. For further extension, a couple of Claisen-aldol tandem reactions of the obtained β-ketoester analogues utilizing TiCl4 and TiCl4-Bu3N reagents smoothly proceeded with good to excellent stereoselectivity.  相似文献   

19.
Yanan Li  Daoyong Chen 《中国化学》2011,29(10):2086-2090
We report a new, effective and simple method for preparing α,β‐unsaturated carbonyl compounds by reacting ketones and aromatic alcohols at 56°C in the presence of CrO3 (CrO3 acts as an oxidant and also a catalyst) for around 10 h. The condensation reactions occurred effectively among a wide combination of ketones and alcohols. The procedure is simple and the yields can be high up to 98%. And a probable mechanism is proposed.  相似文献   

20.
On n,π*- as well as on π,π*-excitation, the 4,5-epoxy-α-ionones (E)- 1 , (E)- 2 , and (E)- 3 undergo (E)/(Z)-isomerization and subsequent γ-H-abstraction leading to the corresponding 4-hydroxy-β-ionones (E/Z)- 9 , (E/Z)- 13 , and (E/Z)- 17 as primary photoproducts. On photolysis of (E)- 3 , as an additional primary photoproduct, the β,γ-unsaturated σ,?-epoxy ketone 18 was obtained. The other isolated compounds, namely the 2H-pyrans 10A + B and 14A + B as well as the retro γ-ionones 11 and 15A + B , represent known types of products, which are derived from the 4-hydroxy-β-ionones (E/Z)- 9 and (E/Z)- 13 , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号