首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(PPh4)[(ReO2S2)CuI] and (NEt4)2[ReOS3)Cu3Cl4]: Fixation of the up to now not Isolated Ions [ReO2S2]? and [ReOS3]? Utilizing the Stability of the CuS2(Re) and Cu3S3(Re) Fragments (PPh4)[(ReO2S2)CuI] ( 1 ) and (NEt4)2[ReOS3)Cu3Cl4] ( 2 ) containing the up to now not isolated oxothioperrhenate ions [ReO2S2]? and [ReOS3]? as ligands, have been prepared by the reaction of (NEt4)[ReS4] with PPh3 and CuI in acetone in the presence of (PPh4)I (( 1 )) or with CuCl in CH2Cl2 in the presence of (NEt4)Cl (( 2 )), respectively. 1 and 2 have been characterized by X-ray structure analysis, elemental analysis and spectroscopic studies (IR, UV/Vis). The electronic spectra show bands which can approximately be assigned to interesting low-energy charge-transfer-transitions of the type d(Cu) → d(Re). For crystal data see Inhaltsübersicht.  相似文献   

2.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

3.
Thiochlorowolframates with Tungsten(V) and (VI). Crystal Structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 Diamagnetic (NEt4)2[WSCl4]2, having tungsten atoms linked via sulfur atoms, is obtained by the reaction of WCl5 with NEt4SH as well as by the reduction of WSCl4 with NEt4I in dichloromethane. If the reduction is performed with PPh4I, PPh4[WSCl4] with monomer anions is formed. Reaction of WCl6 with H2S in dichloromethane yields brown, insoluble WS2Cl2 which has terminal W?S groups and bridging W? S? W groups according to its IR spectrum. WS2Cl2 and PPh4Cl react to afford PPh4[WS2Cl3] · 2 CH2Cl2 and (PPh4)2[WS2Cl4] · 2 CH2Cl2. IR spectra are reported. The crystal structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 were determined by X-ray diffraction. PPh4[WSCl4]: tetragonal, space group P4/n, Z = 2, a = 1292.3 pm, c = 763.2 pm; R = 0.054 for 898 observed reflexions. The [WSCl4]? ion has the structure of a square pyramid with a rather short W?S bond of 206 pm length. (PPh4)2[WS2Cl4] · 2 CH2Cl2: triclinic, space group P1 , a = 1017.7, b = 1114.5, c = 1243.4 pm, α = 70.61, β = 79.73, γ = 80.80°; R = 0.076 for 1804 reflexions. The [WS2Cl4]2? has cis configuration; as it is situated on an inversion center it shows positional disorder.  相似文献   

4.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

5.
Thiohalo Compounds of Niobium and Tantalum: NbSCl3, TaSCl3, [NbSCl5]2?, [TaSCl5]2?, [NbSBr4]?. Crystal Structures of (PPh4)2[NbSCl5] · 2 CH2Cl2 and NEt4[NbCl6] NbSCl3 can be obtained from NbCl5 by reaction with H2S or bistrimethylsilyl sulfide in a suspension of CCl4 or CH2Cl2, respectively; in the latter case the product contains a rest of trimethylsilyl groups. This also applies for TaSCl3, NbSBr3 and TaSBr3, which are formed from the metal pentahalides and S(SiMe3)2. NEt4[NbSCl4] is formed together with NEt4[NbCl6] in the reaction of NbCl5 with NEt4SH in CH2Cl2. PPh4[NbCl6] reacts with S(SiMe3)2 in dichloromethane yielding (PPh4)2[NbSCl5] · 2 CH2Cl2, whereas PPh4[NbSBr4] is obtained from PPh4[NbBr6] and S(SiMe3) under the same conditions. (PPh4)2[TaSCl5] · 2 CH2Cl2 was obtained from TaSCl3 and PPh4Cl in CH2Cl2. According to an X-ray crystal structure determination (PPh4)2[NbSCl5] · 2 CH2Cl2 crystallizes in the β-(AsPh4)2[UCl6] · 2 CH2Cl2 type with positionally disordered, octahedral anions. Crystal data: a = 1 021.7, b = 1120.4, c = 1 243.3 pm, α = 70.77, β = 80.24, γ = 80.54°, space group P1 , Z = 2; 2462 unique observed reflexions, R = 0.036. NEt4[NbCl6] crystallizes isotypic to NEt4[WCl6], a = 723.5, b = 1 018.0, c = 1 174.6 pm, β = 100.07°, space group P21/n, Z = 2; 1 875 reflexions, R = 0.075.  相似文献   

6.
Synthesis and Crystal Structure of (PPh4)2[Mo2(S2)2Cl8] · 2 CH3CN and its Topotactic Transformation to (PPh4)2[Mo2(S2)2Cl8] MoS2Cl3 was prepared from molybdenum and S2Cl2 at 200 °C. Its reaction with PPh4Cl in acetonitrile yielded (PPh4)2[Mo2(S2)2Cl8] · 2 CH3CN. In vacuum or upon warming, it loses the acetronitrile without degradation of the crystals. According to the X-ray crystal structure determinations both compounds, with and without acetonitrile, are triclinic. They contain the same [Cl4Mo(μ-S2)2MoCl4]2– ions, in which the Mo atoms are joined by two disulfido groups and an Mo–Mo bond. Details of the crystal packings and their topotactic transformation are given.  相似文献   

7.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

8.
Thiochloro Anions of Molybdenum (IV). Crystal Structure of (NEt4)3[Mo33-S)(μ-S2)3Cl6]Cl μ CH2Cl2. Crystal Structure, Magnetic Properties, and EPR-Spectrum of (NEt4)2 [Mo2(μ-S2)(μ-Cl)2Cl6] From molybdenum pentachloride and tetraethylammonium hydrogensulfide in CH2Cl2 an insoluble product of composition (NEt4)2[Mo2S3Cl9] was obtained along with a brown solution, from which (NEt4)2[Mo2(S2)Cl8] was crystallized. The insoluble product and NEt4Cl react in CH2Cl2 to yield, among others, (NEt4)3[Mo3(S)(S2)3Cl6]Cl · CH2Cl2. The latter crystallizes in the orthorhombic space group Pnma, a = 2495.8, b = 1501.2, c = 1295.6 pm, Z = 4. According to the crystal structure determination (3070 observed reflexions, R = 0.049) the [Mo3(S)(S2)3Cl6]2? ion consists of an Mo3 triangle with Mo? Mo bonds, each side of the triangle is bridged by disulfido groups and one sulfur atom is capped over the Mo3 triangle; the single chloride ion is looseley associated to three S atoms. (NEt4)2[Mo2(S2)Cl8] also crystallizes in the space group Pnma, a = 1425.6, b = 1129.9, c = 2004.7 pm, Z = 4; structure determination with 1703 observed reflexions, R = 0.061. In the [Mo2(S2)Cl8]2? ion the Mo atoms are bridged via one disulfido group and two chlorine atoms. There is a Mo? Mo bond, but according to the magnetic properties and the EPR spectrum each Mo atom still possesses one unpaired electron.  相似文献   

9.
Reactions of Uranium Pentabromide. Crystal Structures of PPh4[UBr6], PPh4[UBr6] · 2CCl4, (PPh4)2[UBr6] · 4CH3CN, and (PPh4)2[UO2Br4] · 2CH2Cl2 PPh4[UBr6] and PPh4[UBr6] · 2CCl4 were obtained from UBr5 · CH3CN and tetraphenylphosphonium bromide in dichloromethane, the latter being precipitated by CCl4. Their crystal structures were determined by X-ray diffraction. PPh4[UBr6]: 2101 observed reflexions, R = 0.090, space group C2/c, Z = 4, a = 2315.5, b = 695.0, c = 1805.2 pm, β = 96.38°. PPh4[UBr6] · 2CCl4: 2973 reflexions, R = 0.074, space group P21/c, Z = 4, a = 1111.5, b = 2114.2, c = 1718.7 pm, β = 95.42°. Hydrogen sulfide reduces uranium pentabromide to uranium tetrabromide. Upon evaporation, bromide is evolved from solutions of UBr5 with 1 or more then 3 mol equivalents of acetonitrile in dichlormethane yielding UBr4 · CH3CN and UBr4 · 3CH3CN, respectively. These react with PPh4Br in acetonitrile affording (PPh4)2[UBr6] · 4CH3CN, the crystal structure of which was determined: 2663 reflexions, R = 0.050, space group P21/c, Z = 2, a = 981.8, b = 2010.1, c = 1549.3 pm, β = 98.79°. By reduction of uranium pentabromide with tetraethylammonium hydrogen sulfide in dichloromethane (NEt4)2[U2Br10] was obtained; (PPh4)2[U2Br10] formed from UBr4 and PPh4Br in CH2Cl2. Both compounds are extremely sensitive towards moisture and oxygen. The crystal structure of the oxydation product of the latter compound, (PPh4)2[U02Br4]· 2 CH2Cl2, was determined: 2163 reflexions, R = 0.083, space group C2/c, Z = 4, a = 2006.3, b = 1320.6, c = 2042,5 pm, β = 98.78°. Mean values for the UBr bond lengths in the octahedral anions are 266.2 pm for UBr6-, 276.7 pm for UBr62? and 282.5 pm for UO2Br42?  相似文献   

10.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

11.
Summary The ability of [MoS4]2–, anions to be used as ligands for transition metal ions has been widely demonstrated, especially with Fe2+. The present study has been restricted to linear complexes such as (NEt4)2 [Cl2FeS2MoS2] and (NEt4)2[Cl2FeS2MoS2FeCl2]. Their electrochemical properties are described: upon electrochemical reduction, these compounds yield MoS2, as a black precipitate, and an iron complex in solution, assumed to be [SFeCl2]2–. The electrochemical reduction goes through two electron transfers, coupled with the breakdown of the molecular skeleton: a DISPl and an ECE mechanism. Depending on the solvent, the following equilibrium may be observed: [Cl4Fe2MoS4]2–[Cl2FeMoS4]2–+FeCl2. The equilibrium constant, KD, was evaluated by differential pulse polarography. KD is tightly related to the donor number of the solvent.  相似文献   

12.
(PPh4)2[WO2Cl3]2 · 2 CH2Cl2. Synthesis, Vibrational Spectrum, and Crystal Structure Depending on the stoichiometry and the solvent, dichloromethane or 1.2-dichloroethane, WO2Cl2 reacts with tetraphenylphosphonium chloride affording (PPh4)2[WO2Cl4] or (PPh4)2[WO2Cl3]2, respectively. Both compounds are easily soluble in dichloromethane, from which they can be crystallized under incorporation of two molecules CH2Cl2 per formula unit. The crystalline compounds have been characterized by their IR and Raman spectra. According to the X-ray crystal structure analysis, (PPh4)2[WO2Cl3]2 · 2 CH2Cl2 crystallizes in the triclinic space group P1 with one formula unit per unit cell (986 independent observed reflexions, R = 0.061). Lattice constants: a = 1100.2, b = 1116.9, c = 1238.4 pm, = 69.40, = 80.46 and = 85.62°. The crystals consist of PPh4 ions, centrosymmetric [WO2Cl3]22? anions and CH2Cl2 molecules. In the anions, the tungsten atoms are linked via two oxo bridges with WO distances of 184 and 252 pm. The distorted octahedral coordination around each tungsten atom is completed by three terminal chloro and one terminal oxo ligand (WO bond length 166 pm), the latter being in trans position to the longer WO bridging bond. (PPh4)2[WO2Cl4] · 2 CH2Cl2 also forms triclinic crystals that are isotypic with (PPh4)2[WOCl5] · 2 CH2Cl2 and in which the anions must have orientational disorder.  相似文献   

13.
Reaction of Trichloronitro Methane with Iron Carbonyls. Crystal Structure of (PPh4)2[Fe2OCl6] · 2 CH2Cl2 Trichloronitro methane reacts with Fe2(CO)9 or Fe3(CO)12 forming NO[FeOCl2] which is composed of Nitrosyl ions and polymeric [FeOCl2]?. The reaction of NO[FeOCl2] with POCl3 affords Fe(O2PCl2)3; with tetraphenyl phosphoniumchloride it forms the complex (PPh4)2[Fe2OCl6] which is soluble in CH2Cl2. The oxochloro ferrates are characterized by the aid of 57Fe-Mössbauer spectra and by i.r. spectra. A single crystal of (PPh4)2[Fe2OCl6] · 2 CH2Cl2 was used to carry out a structural investigation by means of X-ray diffraction data (space group P1 , Z = 1, a = 1157.2(2), b = 1363.8(3), c = 1140.3(2) pm, α = 109.22(1)°, β = 95.23(1)°, γ = 67.24(2)°, R = 0.052 for 3814 reflexions with F0 > 3σ). The [Cl3Fe? O? FeCl3]2?-anion is found to have a centre of symmetry and thus, in accordance with the i.r. spectra, contains a linear bridge. High thermal parameters of the bridging oxygen atom and the chlorine ligands, however, allow interpretations as orientation disorder of slightly bent anions.  相似文献   

14.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

15.
Synthesis and Crystal Structures of (NEt4)2[TeS3], (NEt4)2[Te(S5)(S7)], and (NEt4)4[Te(S5)2][Te(S7)2] (NEt4)2[TeS3] was obtained by the reaction of NEt4Cl, Na2S4 and tellurium in acetonitrile. It reacts with sulfur, yielding (NEt4)2[Te(S5)(S7)], which is transformed to (NEt4)4[Te(S5)2][Te(S7)2] by recrystallization from hot acetonitrile. According to the X-ray structure analysis, crystals of (NEt4)2[TeS3] are monoclinic (space group P21/c) and form twins with the twinning plane (001); they contain pyramidal TeS32– ions. (NEt4)2[Te(S5)(S7)] forms triclinic twins (space group P1) with the twinning plane (010). In the [Te(S5)(S7)]2– ion an S5 and an S7 atom group are bonded in a chelate manner to the tellurium atom, which has square coordination. (NEt4)4[Te(S5)2][Te(S7)2] (monoclinic, space group P21/c) contains two kinds of anions, the known [Te(S5)2]2– and the new [Te(S7)2]2– ion which has two S7 chelating groups.  相似文献   

16.
Thiochloroarsenates (III): Preparation, Vibrational Spectra, and Crystal Structures of PPh4[As2SCl5] and (PPh4)2[As2SCl6] · C2H4Cl2 PPh4[As2SCl5] can be obtained from As2S3 + PPh4Cl with HCl in CH2Cl2 or 1,2-C2H4Cl2. It reacts with a second mole of PPh4Cl to yield (PPh4)2[As2SCl6]. The latter also is formed by the reaction of As2S5 + 2 PPh4Cl with HCl, a second product being (PPh4)2[As2Cl8]. The i.r. and Raman spectra of the title compounds are reported. Their crystal structures were determined by X-ray diffraction. Crystal data: PPh4[As2SCl5], monoclinic, space group P21/n, a = 1175.8, b = 1508.0, c = 1593.4 pm, β = 96.22°, Z = 4; (PPh4)2[As2SCl6] · C2H4Cl2, triclinic, P1, a = 1166.3, b = 1188.2, c = 2044.6 pm, α = 95.47, β = 97.53, γ = 111.05°, Z = 2. Including the lone electron pairs, the coordination of the As atoms in the [As2SCl5] ion is distorted trigonal-bipyramidal with the S, one Cl atom, and an electron pair in equatorial positions; the two bipyramids around the two As atoms share a common edge. The As atoms in the [As2SCl6]2− ion have a distorted octahedral coordination, the two octahedra share a common face; the lone electron pairs are in the trans positions to the S atom.  相似文献   

17.
Crystal Structures of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 and PPh4[ReOCl4] Single crystals of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 were obtained by chilling dilute solutions of the solvate [ReCl4(PhC?CPh)POCl3] in CH2Cl2. PPh4[ReOCl4] was formed by the reaction of the diphenyl acetylene complex [ReCl5(PhC?CPh)] with PPh4Cl · H2O in CH2Cl2 solution. [ReCl4(PhC?CPh)]2 · 2 CH2Cl2: space group P21/c, Z = 2, 2244 observed independent reflexions, R = 0.038. Lattice parameters (19°C): a = 987.2 pm; b = 1533.9 pm; c = 1193.8 pm; β = 90.17° The compound forms centrosymmetrical dimeric molecules with ReCl2Re bridges with Re? Cl distances of 241.2 and 267.6 pm. The longer Re? Cl bond is situated in trans-position to the equatorial, side-on coordinated diphenyl acetylene ligand with mean Re? C distances of 200 pm. PPh4[ReOCl4]: space group P4/n, Z = 2, 1487 observed, independent reflexions, R = 0.047. Lattice parameters (19°C): a = b = 1272.0 pm; c = 771.3 pm. The compound crystallizes in the AsPh4[RuNCl4] type; it consists of [ReOCl4]? anions and PPh4+ cations. The anions are tetragonal with C4v symmetry and bond lengths Re? O = 165.4 pm and Re? Cl = 232.6 pm; the bond angle OReCl is 106.7°.  相似文献   

18.
The Crystal Packing in three Modifications of PPh4[ReO(S4)2] and PPh4[ReS(S4)2] Mixed crystals PPh4[ReS(S4)2]0,63[ReO(S4)2]0,37 were obtained from PPh4Cl, ReCl5 and Na2S4 in acetonitrile. Their crystal structure corresponds to the known structure of this kind of compound (space group P21/n). In a similar reaction with ReBr5 instead of ReCl5, PPh4[ReO(S4)2] was obtained in small yield. Its triclinic crystal structure was determined by X‐ray crystallography (space group P1). It contains cation pairs (PPh4+)2 such as they have been found in many other instances. In contrast, the crystal structures of the mixed crystals and of one known modification of PPh4[ReS(S4)2] have PPh4+ columns similar to compounds crystallizing in the space group P4/n, albeit in a severely distorted manner; their space group P21/n is a subgroup of P4/n with a doubled unit cell. In another modification of PPh4[ReS(S4)2] (space group P21/c) the columns are less distorted, but arranged in a different way.  相似文献   

19.
Formation of PPh4[WOCl4 · THF] and PPh4Cl · 4As4S3 from W(CO)6 and PPh4[As2SCl5] and their Crystal Structures When W(CO)6 and PPh4[As2SCl5] are irradiated with UV light in tetrahydrofurane, PPh4[WOCl4 · THF], PPh4 Cl· 4As4S3 and PPh4[Cl2H] are obtained. X-ray crystal structure determinations were performed. PPh4[WOCl4 · THF], monoclinic, space group P21/c, Z = 4, a = 1207.5(2), b = 1003.7(2), c = 2642.0(5) pm, β = 114.71(1)°, R = 0.049% for 2824 reflexions; PPh4+ and [WOCl4. THF]? ions are present, the WOCl4 group having the shape of a tetragonal Pyramid with a short W ? O bond (169 pm) and the THF molecule being weakly associated (W? O 236 pm). PPh4Cl · 4AsS3, tetragonal, I41/a, Z = 4, a = 1742.3(3), c = 1664.5(4) pm, R = 0.066% for 1350 reflexions; it consists of separate PPh4+ and Cl? ions and As4S3 molecules.  相似文献   

20.
Synthesis and Crystal Structures of (PPh4)2[TeS3] · 2 CH3CN and (PPh4)2[Te(S5)2] (PPh4)2[TeS3] · 2 CH3CN was obtained by the reaction of PPh4Cl, Na2S4 and Te in acetonitrile. With sulfur it reacts yielding (PPh4)2[Te(S5)2]. The crystal structures of both products were determined by X-ray diffraction. (PPh4)2[TeS3] · 2 CH3CN: triclinic, space group P1 , Z = 2, R = 0.041 for 4 629 reflexions; it contains trigonal-pyramidal [TeS3]2? ions with an average Te? S bond length of 233 pm. (PPh3)2[Te(S5)2]: monoclinic, P21/n, Z = 2, R = 0.037 for 2 341 reflexions. In the [Te(S5)2]2? ion the tellurium atom has a nearly square coordination by four S atoms. Along with the Te atoms each of the two S5 groups forms a ring with chair conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号