首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction Products of Chloromethoxiphosphines and Antimony (V) Chloride. Vibrational Spectra of the 1:1-adducts of Methoxiphosphoryl Compounds and Antimony (V) Chloride Chloromethoxiphosphines react with antimony(V) chloride in a redox process to yield the chloromethoxiphospllonium hexachloroantimonates(V) (CH3O)3PCl2+SbCl6? (II) and CH3OPCl3+SbCl6? (III). II, III, (CH3O)3PCl+SbCl6?(1) and (CH3O)4P+SbCl6? eliminate easily methyl chloride and give the addition compounds OP(OCH3)3·SbCl5(IV), OPCl(OCH3)2 · SbCl5 (V), OPCl2(OCH3)·SbCl5 (VI) and OPCl3·SbCl5 (VII). The vibrational spectra of IV, V nnd VI are discussed.  相似文献   

2.
Dimethyl-N-Halogenoamine, their Ammonium Salts and Borontrihalide Adducts The preparation and vibrational spectra of (CH3)2NHCl+X? (X? = CF3SO3? I , SO3F? II , SO3Cl? III , BCl4? IV ), and (CH3)2NHBr+CF3SO3? V as well as the adducts (CH3)2NCl · S (S = BF3 VI , BCl3 VII , BBr3 VIII ) and (CH3)2NBr · BF3 IX are reported. The crystal structure of VII has been determined from three-dimensional diffractometer data at ?100°C. The Cl atom and one methyl group in the dimethyl-N-chloroamino group show disorder. The structural data are: B? Cl 183(2) pm, B? N 167(3) pm, N? C 152(3) pm (distances to disordered positions are not included).  相似文献   

3.
Preparation of Dimethyl(mercapto)sulfonium-hexachloroantimonate [(CH3)2SSH]+SbCl6? The preparation of [(CH3)2SSH]+SbCl6? from [(Ch3)2SCl]+SbCl6? and H2S at 223 K is reported. This salt is stable below 243 K and is characterized by vibrational spectroscopy.  相似文献   

4.
About the Preparation of N-Chloro-N-Methylammonium Salts (CH3)nNCl4–n+MF6? (n = 1–3; M = As, Sb) and (CH3)2NClX+MF6? (X = F, Br) Simple one-step methods for the preparation of the methylated chloroammonium salts (CH3)nNCl4–n+MF6? (n = 1–3; M = As, Sb) and for (CH3)2NClX+MF6? (X = F, Br) are reported. Their vibrational and NMR-spectroscopical data are discussed in comparison.  相似文献   

5.
NEW PHTHALOCYANINE PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY   总被引:2,自引:1,他引:2  
Six new aluminum and silicon phthalocyanines have been synthesized and their photocytotoxicity toward V79 cells has been studied. The compounds that have been prepared are: AIPcOSi(CH3)2(CH2),N(CH3)2, I; AIPcOSi(CH3)2(CH2)3N(CH3)3+I?, II; CH3SiPcOSi(CH3)2(CH2)3N(CH3)2, III; HOSiPcOSi(CH3)2(CH2)3N(CH3)2, IV; HOSiPcOSi(CH3)2(CH2)3)3(CH3)3+I?, V; and SiPc[OSi(CH3)2(CH2)3N(CH3)3+I?]2, VI. Relative growth delay values for compounds I-VI and relative cytotoxicity values for compounds I, II, IV, V and VI have been determined. Compounds I and II have been shown to be comparable in photocytotoxicity to what is presumed to be AIPcOH.xH2O, and compound IV has been shown to have greater activity. The classes of compounds to which these six compounds belong appear to have potential for photodynamic therapy.  相似文献   

6.
Vibrational Spectra of Trimethylphosphonium Cations (CH3)3PX+ (X = H, D) and Crystal Structures of (CH3)3PD+SbCl6? and (CH3)3PCl+SbCl6? The trimethylphosphonium salts (CH3)3PX+SbCl6? (X = H, D) and (CH3)3PH+MF6? (M = As, Sb) are prepared and characterized by vibrational and NMR spectroscopy (1H, 31P, 13C). In addition the crystal structures of (CH3)3PD+SbCl6? and (CH3)3PCl+SbCl6? are reported. (CH3)3PD+SbCl6? crystallizes in the orthorhombic space group Pnma with a = 1555(1) pm, b = 753.1(8) pm, c = 1166(1) pm Z = 4. (CH3)3PCl+SbCl6? crystallizes triclinic in the space group P1 with a = 704.6(4) pm, b = 729.5(3) pm, c = 1391.1(7) pm, α = 89.57(4)°, b? = 88.04(4)°, γ = 74.98(4)° and Z = 2.  相似文献   

7.
Preparation of μ-Sulfurdisulfonium Salts [(CH3)2S? Sx? S(CH3)2]2+2A? (x = 1–3, A? = AsF6?, SbF6?, SbCl6?). On the Analogy of the Reactivity of Sulfanes and Sulfonium Salts The preparation of the μ-sulfurdisulfonium salts [(CH3)2S? Sx? S(CH3)2]2+(A?)2 with x = 1–3 and A? = AsF6?, SbF6?, SbCl6? is reported. The salts are formed by reaction of (CH3)2SH+A? and (CH3)2SSH+A? with SCl2 and S2Cl2, resp. They are characterized by vibrational spectroscopic measurements. [(CH3)2S? S2? S(CH3)2]2+(SbF6?)2 crystallizes in the space group C2/c with a = 1 884.5(7) pm, b = 1 302.8(5) pm, c = 1 477.2(5) pm, β = 98.62(3)° und Z = 8.  相似文献   

8.
The reaction of (CH3)2AsJ and AgN3 yields (CH3)2AsN3; a colourless liquid (b. p. 136°C) which dissolves as a monomeric in benzene. (CH3)2BiN3 is precipitated in form of colourless needles (dec. temp. 150°C) from an etherical solution of Bi(CH3)3 and HN3. According to its vibrational and mass spectra the molecules are not associated although the (CH3)2BiN3 is not soluble; dipole association of this polar molecules is assumed for the crystal structure. (CH3)2TlN3 can be obtained from TI(CH3)3 and ClN3 as well as from (CH3)2TlOH and HN3 in form of colourless needles and leaves (dec. temp. 245°C). According to its vibrational spectra it has an ionic structure, (CH3? Tl? CH3)+N?3.  相似文献   

9.
The melting diagram of the system (CH3)4NF? HF was studied between 50 and 100 mole-% HF and from ?185°C to the respective liquidus temperatures (at most 162°C) by difference thermal analysis aided by temperature-dependent X-ray powder diffraction. The system was found to be quasi-binary with the HF-rich intermediary stable compounds (CH3)4NF · 2 HF (melting point 110°C), (CH3)4NF · 3 HF (20°C, decomposition), (CH3)4NF · 5 HF (?76°C, decomposition), and (CH3)4NF · 7 HF (?110°C, decomposition), most of which undergo solid-solid phase transitions. Crystal structures were determined of the low-temperature form of (CH3)4NF · 2 HF (stable below 83°C, orthorhombic, space group Pbca, Z = 8 formula units per unit cell), the high-temperature form of (CH3)4NF · 3 HF (stable above ?87°C, monoclinic, P2/c, Z = 4), and of (CH3)4NF · 5 HF (tetragonal, I4 , Z = 2). The structures are those of poly(hydrogen fluorides) (CH3)4N[HnFn+1] with homologous anions [H2F3]?, [H3F4]?, and [H5F6]?, respectively, formed by strong hydrogen bonding F? H…?F. The anion [H5F6]? is the first one of this composition established by crystal structure analysis. Its structure can be written as [(FH)2FHF(HF)2]? with four equivalent terminal hydrogen bonds of 248.4 pm and a very short central one of 226.6 pm (F…?F distances) through a 4 point of the space group.  相似文献   

10.
A very recent laser ablation‐molecular beam experiment shows that an Al+ ion can react with a single methylamine (MA, CH3NH2) or dimethylamine (DMA, (CH3)2NH) molecule to form a 1:1 ion–molecule complex Al+[CH3NH2] or Al+[(CH3)2NH)], whereas a dehydrogenated complex ion Cu+[CH3N] or Cu+[C2H5N] is detected, respectively, in the similar reaction for a Cu+ ion. Here, we show a comparative density functional theory study for the reactivities of the Al+ and Cu+ ions toward MA and DMA to reveal the intrinsic mechanism. It is found that the interactions of the Al+ ion with MA and DMA are mostly electrostatic, leading to the direct ion–molecule complexes, Al+? NH2CH3 and Al+? NH( CH3)2, in contrast to the non‐negligible covalent character in the corresponding Cu+‐containing complexes, Cu+? NH2CH3 and Cu+? NH( CH3)2. The general dehydrogenation mechanism for MA and DMA promoted by the Cu+ ion has been shown, and the preponderant structures contributing to the mass spectra of the product ions Cu+[CH3N] and Cu+[C2H5N] are rationalized as Cu+? NHCH2 and Cu+? N( CH2)( CH3). The presumed dehydrogenation reactions are also discussed for the Al+‐containing systems. However, the involved barriers are found to be too high to be overcome at low energy conditions. These results have rationalized all the experimental observations well. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

11.
A study of the IR spectra of L- and DL-cysteine is carried out in a range of frequencies from 4000 cm?1 to 600 cm?1 and temperatures from 333 K to 83 K. Changes in the spectra of L- and DL-cysteine (NH 3 + CH(CH2SH)-COO?) on cooling are analyzed in comparison with the spectra of L- and DL-serine (NH 3 + CH(CH2OH)-COO?) and three polymorphs of glycine (NH 3 + CH2-COO?) previously studied under temperature variation. Changes in the IR spectra at variable temperatures are correlated with previously obtained diffraction data on anisotropic compression of the structure and changes in the geometric parameters of hydrogen bonds. Special attention is paid to temperature regions in which anomalies were detected by vibrational spectroscopy, X-ray diffraction, and calorimetry.  相似文献   

12.
dh-μ-Carboxilato-e-μ-hydroxo-f-μ-oxo-bis[trichloroantimonies(V)] Structure and Spectroscopic Investigations The title compounds can be prepared by reaction of SbCl5 · H2O and RCOOH (R ? CF3, CCl3, CHCl2, CH2Cl, CH3, CH3CH2, (CH3)2CH, H) or by reaction of H5O2+SbCl6? and RCO2SbCl4 in good yields. 1H-NMR investigations proove that there is a rapid exchange between the components in the reaction mixture. The vibrational spectra are discussed in view of the CO2 vibrations and hydrogen bonding. The crystal and molecular structure of dh-μ-Trichloroacetato-e-μ-hydroxo-f-μ-oxo-bis[trichloroantimony(V)] is determined by X-ray analysis.  相似文献   

13.
Force Constants of Compounds of the Type (CH3)3ElCl+X?(El = N, P, As, Sb; X? = SbCl6?) For the cations (CH3)3NCl+ ( 1 ), (CH3)3PCl+ ( 2 ), (CH3)3AsCl+ ( 3 ), and (CH3)3SbCl+ ( 4 ) a normal coordinate analysis using a general valence force field is performed by the method of Fadini. The force constants are discussed. Calculations of the potential energy distribution show, that the skeletal vibrations in 4 are all characteristic vibrations, but there is a strong coupling of vibrations in 1 .  相似文献   

14.
Preparation of Trifluormethylhalogen Iodate(I) Salts (CH3)4N+CF3IX? (X = F, Cl, Br) and Trifluormethyltrifluormethoxy Iodate(I) (CH3)4N+CF3IOCF3? We describe the preparation of new trifluormethyliodate(I) salts CF3IX? (X = F, Cl, Br, OCF3). (CH3)4N+CF3ICl? and (CH3)4N+CF3IBr? are obtained via addition of CF3I with the corresponded tetramethylammonium halogenide. (CH3)4N+CF3IOCF3? is synthesized by comproportionation of (CH3)4N+CF3ICl? with CF3OCl under formation of Cl2 at ?78°C. (CH3)4N+CF3IF? is formed either, through thermolysis of (CH3)4N+ CF3IOCF3? under separation of COF2, or reaction of CF3I with (CH3)4N+ OCF3?. The thermolabile compounds have been characterized by i.r., Raman, 19F-, 13C NMR spectroscopy.  相似文献   

15.
Abstract

The novel ionic complexes [(C6H5)4As]2 [(CH3)3PtX3](X = Cl? and Br?) and [(CH3)3Pt(bipy)L]+[B(C6H5)4]? (bipy = 2,2′-bipyridine, L = aliphatic and aromatic isocyanide) have been prepared. The structure of the complex ions has been inferred from Laser-Raman and infrared spectra in the solid state and 1H NMR in solution. These data are consistent with a facial configuration of the organometallic moiety. Trends in vibrational frequencies ν(Pt-C) and ν(Pt-X) indicate a “trans” influence sequence for the ligands, which in the case of (CH3)3PtX2- 3 is related with that found for (CH3)2AuX? 2 ions.  相似文献   

16.
Preparation of N-Methyl-N-chlornitryl Hexafluoro Metallates ON(Cl)CH3+MF6? (M = As, Sb) . The preparation of ON(Cl)CH3+MF6? (M = As, Sb) by methylation of ONCl with CH3OSO+MF6? (M = As, Sb) is reported. Both salts were unlimited stable at - 78°C. The nitryl cation which is isoelectronic with acetyl chloride was identified by vibrational spectroscopy as N-chloro-N-hydroxy-methaneiminium cation in the solid state.  相似文献   

17.
The methylidene complex [(η-C5H5)Re(NO)(PPh3)(CH2)]+PF6?(I) yields kinetically labile sulfonium salts when treated with CH3SCH3, CH3SCH2C6H5, and (η-C5H5)Re(NO)(PPh3)(CH2SCH3) (V);the binuclear adduct formed in the latter case, [(η-C5H5)Re(NO)(PPh3)CH2]2S+CH3 (VI), is substantially more stable than the others and undergoes hydride transfer disproportionation to [(η-C5H5)Re(NO)(PPh3)(CHSCH3)]+PF6?(VII) and (η-C5H5)Re(NO)(PPh3)(CH3) (VIII) when heated.  相似文献   

18.
G. Meyer  P. Viout 《Tetrahedron》1977,33(15):1959-1961
The alkaline hydrolysis of p-nitrophenyl acetate and of CH3CO2(CH2)2N+(CH3)2C16H33, Br? was studied in the presence of micelles C16H33N+(CH3)2CH2CH2OH, Br? and CTAB, C16H33N+(CH3)3,Br?. A pathway involving an intermediate is suggested for the hydrolysis of the ester. Hydrolysis rate of the intermediate in the presence of micelles is the same as hydrolysis rate for the ester in the absence of micelles. Consequently, hydrolysis of p-nitrophenyl acetate is not catalysed by one type of micelle, while it is enhanced by another type of micelle.  相似文献   

19.
Reaction of Telluriumhexafluoride and Trimethylamine, Structures of the TeF5? and SeF5? Anions The reaction of TeF6 and (CH3)3N is of the redox kind, resulting in reduction of tellurium: X-ray single crystal analysis reveals the compounds (CH3)2N? CH2? N(CH3)2+TeF5? and [(CH3)3NH+]5(TeF5?)3(HF2?)2. By comparison with published data it can be shown that this mixture is identical to previously published [(CH3)3N]2TeF6. The latter was supposed to be one of the few examples of tellurium in a coordination state of eight. (CH3)4N+TeF5? and (CH3)4N4SeF5? are obtained and their structure is investigated by single crystal x-ray methods also. The anions SF5?, SeF5? and TeF5? are discussed in terms of weak interactions.  相似文献   

20.
The ion–molecule reactions of CH3NH2+, (CH3)2NH+, and (CH3)3N+ with the respective amines have been investigated at thermal kinetic energies in a high-pressure photoionization mass spectrometer at several wavelengths (energies) in the vacuum ultraviolet. The absolute rate coefficient for proton transfer from (CH3)3N+ to (CH3)3N decreases from 8.2 × 10?10 cm3/molecule · sec at 147.0 nm (8.4 eV) to 4.9 × 10?10 cm3/molecule. sec at 106.7-104.8 nm (11.7 eV). In dimethylamine, the rate coefficient decreases from 11.6 × 10?10 cm3/molecular. sec at 8 4 eV to 10.2 × 10?10 cm3/molecule osec at 11.7 eV, while no significant effect of energy was detected in methylamine. The reactions of several fragment ions are also reported. Experiments were also carried out at pressures up to 0.5 torr in order to investigate the further solvation of CH3NH2+, (CH3)2NH2+, and (CH3)3NH+. It was found that the maximum proton solvation numbers in methyl-, dimethyl-, and trimethyl-amine are 4, 3, and 2, respectively, under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号