首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vinylcyclopropane (VCP) has been well applied as a five-carbon component, rather than a three-carbon component, in transition-metal catalyzed cycloadditions. Here we demonstrate a Rh(I)-catalyzed [3 + 2] reaction of trans-VCP-enes, where VCP acts as a three-carbon synthon to furnish five-membered carbocycles. This novel cycloaddition is efficient in generating bicyclic cyclopentanes in good yields from simple and easily prepared substrates. When cis-VCP-ene is used as the substrate, VCP acts as a five-carbon unit to give a [5 + 2] cycloadduct. Rationalization of the [3 + 2] and [5 + 2] cycloadditions of VCP-enes has been proposed.  相似文献   

2.
Six 1,1‐disubstituted vinylcyclopropanes (VCP) were synthesized from glycine and amino acids bearing hydrophobic moieties, l ‐alanine, l ‐valine, l ‐leucine, l ‐isoleucine, and l ‐phenylalanine. These VCP derivatives efficiently underwent radical ring‐opening polymerization to afford the corresponding polymers bearing trans‐vinylene moiety in the main chains and the amino acid‐derived chiral moieties in the side chains. The polymers were film‐formable, and in the films of polymers bearing the glycine‐ and alanine‐derived side chains, presence of hydrogen bonding was confirmed by IR analysis. Thermogravimetric analysis of the polymers revealed that the temperatures of 5% weight loss were higher than 300 °C. Differential scanning calorimetry clarified that the polymers were amorphous ones showing glass transition temperatures in a range of 48–80 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3996–4002  相似文献   

3.
We present a detailed study of a [3+2+1] cascade cyclisation of vinylcyclopropanes (VCP) catalysed by a bromenium species (Brδ+? Xδ?) generated in situ, which results in the synthesis of chiral bicyclic amidines in a tandem one‐pot operation. The formation of amidines involves the ring‐opening of VCPs with Br? X, followed by a Ritter‐type reaction with chloramine‐T and a tandem cyclisation. The reaction has been further extended to vinylcyclobutane systems and involves a [4+2+1] cascade cyclisation with the same reagents. The versatility of the methodology has been demonstrated by careful choice of VCPs and VCBs to yield bicyclo[4.3.0]‐, ‐[4.3.1]‐ and ‐[4.4.0]amidines in enantiomerically pure form. On the basis of the experimental observations and DFT calculations, a reasonable mechanism has been put forth to account for the formation of the products and the observed stereoselectivity. We propose the existence of a π‐stabilised homoallylic carbocation at the cyclopropane carbon as the reason for high stereoselectivity. DFT studies at B3LYP/6‐311+G** and M06‐2X/6‐31+G* levels of theory in gas‐phase calculations suggest the ring‐opening of VCP is initiated at the π‐complex stage (between the double bond and Br? X). This can be clearly perceived from the solution‐phase (acetonitrile) calculations using the polarisable continuum model (PCM) solvation model, from which the extent of the ring opening of VCP was found to be noticeably high. Studies also show that the formation of zero‐bridge bicyclic amidines is favoured over other bridged bicyclic amidines. The energetics of competing reaction pathways is compared to explain the product selectivity.  相似文献   

4.
Previously reported was that cis-ene-vinylcyclopropanes (cis-ene-VCPs) underwent Rh-catalyzed [5+2] reaction to give 5,7-fused bicyclic products, where vinylcyclopropane (VCP) acts as five-carbon synthon. Unfortunately, this reaction had very limited scope. Replacing the 2π component of cis-ene-VCPs to allene moiety, the corresponding cis-allene-VCPs did not undergo the expected normal [5+2] cycloaddition to give 5,7-fused bicyclic products. Instead, the challenging bicyclo[4.3.1]decane skeleton was obtained via an unprecedented bridged [5+2] cycloaddition. DFT calculations were applied to understand why this bridged [5+2] reaction is favored over the anticipated but not realized normal [5+2] reaction.  相似文献   

5.
The vinylcyclopropane (VCP) 2 was prepared by electrochemical reductive cyclization of β-dicarbonyl enol phosphate 1. The rearrangement of VCP 2 was investigated using a number of conditions including the use of a rhodium(I) complex, pyrolysis, treatment with cation radical source, and protic acid catalysis.  相似文献   

6.
Zhang  Tao  Yuan  Tiancheng  Xiao  Xiao  Peng  Haozhe  Fang  Xinyu  Wang  Kaili  Liu  Xiaorong  Li  Yanjun 《Cellulose (London, England)》2022,29(16):8781-8795

The functional paper holds significant potential in some special fields, which has achieved great development. Nevertheless, using cellulose paper to fabricate functional paper, which integrates transparency, robustness, flexibility, shape memory, and sustainability, remains a challenge. Herein, the vitrimer precursor was vacuum impregnated into cellulose paper and then in-situ polymerized to develop a vitrimer-cellulose paper (VCP) with transparency, shape manipulation, robustness, and sustainability. Taking advantage of the vitrimer’s dynamic performance, the resulting VCP demonstrated excellent optical transparency (transmittance of 84%, haze of 75%), enhanced mechanical strength (tensile strength of 80.5 MPa), chemical resistance, thermal-triggered shape manipulation, and reprocessing. Noteworthily, VCP possessed outstanding light management capability with effective light propagating and scattering performance. Furthermore, VCP laminate showed increased mechanical property with the increased layers, and it can be reprocessed to a bulk composite after crushing. These incorporated merits of VCP make a promising candidate for light management and sustainable building application.

  相似文献   

7.
Previously reported was that cis‐ene‐vinylcyclopropanes (cis‐ene‐VCPs) underwent Rh‐catalyzed [5+2] reaction to give 5,7‐fused bicyclic products, where vinylcyclopropane (VCP) acts as five‐carbon synthon. Unfortunately, this reaction had very limited scope. Replacing the 2π component of cis‐ene‐VCPs to allene moiety, the corresponding cis‐allene‐VCPs did not undergo the expected normal [5+2] cycloaddition to give 5,7‐fused bicyclic products. Instead, the challenging bicyclo[4.3.1]decane skeleton was obtained via an unprecedented bridged [5+2] cycloaddition. DFT calculations were applied to understand why this bridged [5+2] reaction is favored over the anticipated but not realized normal [5+2] reaction.  相似文献   

8.
A series of polyureas 5a-c bearing vinylcyclopropane (VCP) moiety in their main chains was synthesized by the polyaddition of diamine 2 bearing VCP moiety with diisocyanates. Upon treatment of polyurea 5b with thiols in the presence of azobisisobutyronitrile (AIBN), the VCP moieties in the polymer main chain efficiently reacted with the thiols via a sequence of the radical addition of thiol to the vinyl group and the ring opening of the cyclopropane ring, yielding the corresponding networked polymers 9–11 . The thermogravimetric analysis of the networked polymers 9–11 revealed that their residual weight at 350 °C was higher than that of the precursor polyurea 5b .  相似文献   

9.
The effect of reaction conditions on the rate of radiation-induced emulsion polymerization of ethylene was studied by use of a 500-ml autoclave. Among various kinds of emulsifiers, a series of potassium salts of fatty acids gave high rates of the polymerization. The polymerization was inhibited by the presence of oxygen, but the rate of polymerization followed by the induction period was not influenced by the initial presence of oxygen. Stirring rate and the monomer: water ratio did not affect the rate of polymerization. The rate of polymerization was maximum at about 80°C, and number-average molecular weight was influenced by the temperature in a similar manner as the rate of polymerization. This suggests that the change of mobility of propagating radical in the polymer particle changes the rate of termination reaction. The rate of polymerization was proportional to the 1.7 power of the reaction pressure.  相似文献   

10.
杂多酸引发四氢呋喃聚合反应 Ⅱ.水的反应行为   总被引:5,自引:2,他引:3  
前报我们对低腐蚀性非均相的磷钨杂多酸H3PW12O40(PW12)引发体系进行了研究[1],发现环氧乙烷(EO)可有效地促进PW12引发的四氢呋喃(THF)聚合反应,大幅度地降低了引发剂用量,聚合物收率显著提高,并发现聚合过程中不存在链终止反应.产物...  相似文献   

11.
运用密度泛函理论(DFT)的Dmol3方法, 计算了甲醇钠引发的环氧乙烷开环聚合的反应过程. 并运用前线轨道理论对该聚合反应的各步反应历程进行了分析. 计算结果表明, 链引发为无能垒的放热反应, 放出的能量达到92.560 kJ·mol-1, 而链增长过程则需越过100.951 kJ·mol-1的反应能垒, 链增长物种与环氧乙烷的前线轨道相对称, 可以使开环聚合反应继续进行下去. 当向反应体系中加入草酸、磷酸等质子酸时, 会立即发生链终止反应. 此外, 还对链增长过渡态的合理性进行了确认, 绘出了相应的反应势能曲线.  相似文献   

12.
以十二烷基苯磺酸钠(SDBS)为乳化剂,硫酸或盐酸为催化剂,八甲基环四硅氧烷(D4)为单体,十六烷为共稳定剂,超声预乳化,制备了聚硅氧烷细乳液,研究了超声时间、催化剂用量、乳化剂用量和温度对聚合动力学的影响.结果表明,在一定酸度范围内,聚合速度与硫酸浓度0.81次方、与盐酸浓度1.02次方、与乳化剂浓度-0.66次方成正比,反应的表观活化能为40.56kJ/mol.  相似文献   

13.
分别以过氧化二苯甲酰 (BPO)和过硫酸钾 (KPS)为引发剂、1 ,1 0 邻二氮菲为催化剂配体、十二烷基磺酸钠为乳化剂 ,在水分散体系中进行了苯乙烯的反向原子转移自由基聚合反应 .结果表明 ,对于BPO引发的苯乙烯乳液聚合反应 ,必须由CuBr和CuBr2 形成复合催化剂体系才能达到较好的控制效果 ,其中CuBr可以是直接加入到催化剂体系中 ,也可以是由CuBr2 与Cu0 就地快速反应生成 .CuBr迅速地与BPO反应而实现活性聚合中所谓的“快引发” ,从而有效地控制苯乙烯的聚合反应 .对于KPS引发的苯乙烯乳液聚合体系 ,反应介质的pH值对聚合有很大的影响 ,反应速度随着反应介质pH值的升高而加快 .实验结果表明 ,由两种不同引发剂引发的苯乙烯的乳液的粒径及粒径分布也有很大的差异  相似文献   

14.
UV光引发的丙烯酰胺反相乳液聚合   总被引:7,自引:0,他引:7  
报道了不透明丙烯酰胺反相乳液体系的UV光引发聚合新方法 .使用普通中压汞灯并辅以适当搅拌 ,UV光引发丙烯酰胺 水 煤油 Span80 +OP 10反相乳液聚合可在 2 0min左右完成 ,所得聚合物分子量达千万 ;聚合过程中不存在恒速期 ,扫描电镜未观察到聚合前后乳胶粒径有数量级的变化 ,表明聚合反应以单体液滴成核为主 .此外 ,考察了光引发剂类型及浓度、单体浓度、乳化剂用量、反应温度等对聚合反应的影响 ,结果表明不同光引发剂的引发活性为Irgacure 2 95 9>(ITX +EDAB) >BDK ,引发剂浓度增加 ,反应速度先增加而后降低 ,存在一最大值 ;单体浓度增加 ,反应速度加快 ,聚合物分子量提高 ;乳化剂用量增加 ,反应速度加快而分子量变化不明显 ;聚合表观活化能为 13 34kJ mol.  相似文献   

15.
Zn(0)/ppm concentrations of CuBr2 from 10 to 50 ppm was firstly used to catalyze radical polymerization of acrylonitrile at ambient temperature. The polymerization displayed typical living radical polymerization (LRP) characteristics, as evidenced by pseudo first‐order kinetics of polymerization, linear increase of number‐average molecular weight, and low polydispersity index (PDI) value. Effects of solvent, copper concentration, and initiator concentration on the polymerization reaction and molecular weight as well as PDI were investigated in detail. EC excelled NMP, DMF, and DMSO in terms of rate of polymerization as well as control of molecular weight and PDI. The increase of the copper concentration from 2.5 to 50 ppm leads to a higher rate of polymerization and a better control over the polymerization reaction. 1H NMR and GPC analyses as well as chain extension reaction confirmed the very high chain‐end functionality of the resultant polymer. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
The total synthesis of (+)‐asteriscanolide is reported. The synthetic route features two key reactions: 1) the rhodium(I)‐catalyzed [(5+2)+1] cycloaddition of a chiral ene‐vinylcyclopropane (ene‐VCP) substrate to construct the [6.3.0] carbocyclic core with excellent asymmetric induction, and 2) an alkoxycarbonyl‐radical cyclization that builds the bridging butyrolactone ring with high efficiency. Other features of this synthetic route include the catalytic asymmetric alkynylation of an aldehyde to synthesize the chiral ene‐VCP substrate, a highly regioselective conversion of the [(5+2)+1] cycloadduct into its enol triflate, and the inversion of the inside–outside tricycle to the outside–outside structure by an ester‐reduction/elimination to enol‐ether/hydrogenation procedure. In addition, density functional theory (DFT) rationalization of the chiral induction of the [(5+2)+1] reaction and the diastereoselectivity of the radical annulation has been presented. Equally important is that we have also developed other routes to synthesize asteriscanolide using the rhodium(I)‐catalyzed [(5+2)+1] cycloaddition as the key step. Even though these routes failed to achieve the total synthesis, these experiments gave further useful information about the scope of the [(5+2)+1] reaction and paved the way for its future application in synthesis.  相似文献   

17.
环硅氧烷负离子乳液聚合中活性中心浓度的变化规律   总被引:3,自引:0,他引:3  
以八甲基环四硅氧烷(D4)为单体,十二烷基二甲基苄基氢氧化铵(BDAH)为乳化剂兼催化剂,进行环硅氧烷负离子乳液聚合,采用凝胶色谱(GPC)测定聚合产物的转化率及分子量.在此基础上,分析基元反应,提出活性中心生成机理,并应用环硅氧烷开环聚合普适动力学模型计算乳液聚合平衡之前的活性中心浓度变化规律.结果发现,聚合温度较低时,活性中心浓度随时间逐渐增加,最终恒定;聚合温度较高时,活性中心浓度随时间仅单调递增.结果与机理相符.  相似文献   

18.
采用称量法和GPC,研究了以二甲基乙酰胺为溶剂,偶氮二异丁腈为引发剂,自由基溶液聚合制备含芳酰胺结构的新型甲壳型液晶高分子聚[乙烯基对苯二甲酸二(4-甲氧基苯胺)](PMPACS)的聚合反应动力学.研究发现,(1)MPACS的聚合反应在60℃时主要为双基偶合终止,所以反应后期聚合物分子量明显增大,分子量分布变窄;(2)该反应的聚合反应速率方程为Rp=kp[M][I]1/2,表观活化能Eα=44 kJ/mol,在60℃时的聚合反应常数kp=1.04 L·mol-1·h-1;(3)相同聚合条件下,单体的转化率和数均分子量随单体初始浓度[M]0的增加而增大,当引发剂浓度[I]0增加时,聚合物的分子量随之降低,分子量分布增大;(4)该研究虽采用普通自由基聚合,所得聚合物的分子量分布却较窄,仅为1.1~1.4.  相似文献   

19.
研究了含水介质中,以枯基醇(CumOH)/三氟化硼(BF3)为引发体系的苯乙烯正离子聚合的特征,探讨了CumOH用量、体系中的水含量对苯乙烯正离子聚合转化率、聚合速率以及产物分子量及其分布的影响;并从分子模拟、分子量末端结构等角度探讨含水介质中苯乙烯正离子聚合的反应机理.结果表明,[H2O]≤0.11 mol/L条件下,苯乙烯正离子聚合具有可控聚合的特征;水对聚合速率、单体转化率以及分子量影响较小;[H2O]>0.11 mol/L,正离子聚合不能顺利进行.根据计算结果,CumOH/BF3引发体系相对于CumOH/H2O引发体系在参与引发所需要的活化能垒更小,说明CumOH/BF3更容易引发苯乙烯正离子聚合,这与实验结果一致.CumOH/BF3引发体系是通过活化C—O键来引发苯乙烯正离子聚合,水作为可逆终止剂有利于进行可控聚合,并得到了末端含有羟基的聚合物.  相似文献   

20.
The coordination polymerization of ethylene in water as a reaction medium was studied. Rubbery amorphous branched polyethylene was obtained when a known cationic diimine-substituted methyl complex was employed as a catalyst precursor. High rates of up to 900 TOh(-1) (turnover frequency) were observed. In contrast to solution polymerization in an organic solvent, the rate of suspension polymerization in water increases greatly with ethylene pressure in the range up to 20 bar; this indicates control of the polymerization rate by the concentration of the olefin monomer at the catalytically active site. The effect and mode of mass transfer phenomena were studied. A high catalyst stability in the aqueous coordination polymerization was observed. It was found to be due to an "encapsulation" of the water-insoluble catalyst precursor in the hydrophobic amorphous polymer during the polymerization reaction, and this resulted in strongly restricted accessibility for the aqueous phase. Surprisingly, exposure of the water-stable catalyst precursor to ethylene monomer in solution in the presence of water resulted in immediate decomposition. Polymer microstructure, and thermal and mechanical properties were investigated. The different degree of branching, molecular weight, and corresponding macroscopic properties of the polymers obtained in water as a reaction medium versus solution polymerization in methylene chloride under the same conditions are due to the different phase behavior during polymerization (suspension vs. solution), as opposed to an effect of water on the catalytically active centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号