首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A bulk PMMA sample was irradiated by gamma rays (0.69 Gy. s−1), and its structural changes were monitored by steric exclusion chromatography, differential scanning calorimetry, dynamic mechanical spectroscopy and dilatometry. The glass transition temperature Tg decreases more than predicted from the molecular weight data, but the corresponding excess of change is not thermoreversible and can be suppressed by annealing. Strong not thermoreversible changes are also observed around the first secondary transition temperature (≈︁ 60°C) as well as in mechanical spectra and in dilatometric curves. Various hypothetical explanations are examined.  相似文献   

3.
The effect of ion‐dipole interaction between lithium cations and oxygen atoms in poly(methyl methacrylate) (PMMA), which leads to the great enhancement of glass transition temperature (Tg), on the linear viscoelastic properties is studied using binary blends of PMMA and lithium trifluoromethanesulfonate (LiCF3SO3). The strong interaction at low temperature leads to the high modulus in the glassy region even near Tg. The interaction becomes weak as increasing the temperature. Consequently, the rheological terminal region is clearly detected without a marked enhancement of steady‐state compliance, although the zero‐shear viscosity increases by the LiCF3SO3 addition. The result indicates that the crosslinking due to the ion‐dipole interaction has a lifetime that decides the longest relaxation time. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2388–2394  相似文献   

4.
The preparation of five samples of poly(methyl methacrylate) covering a wide range of tacticity and their electron irradiation to produce series of varying molecular weight are described. The glass transition temperature Tg of each polymer was determined by DTA techniques. Plots of Tg and the reciprocal of the molecular weight are well fitted in every case by a straight line. The data are also fitted to the Gibbs-DiMarzio theory and the values of the energy and free-volume parameters obtained are discussed. A method of estimating Tg of pure syndiotactic poly(methyl methacrylate) by extrapolation is presented, the value obtained being 160°C.  相似文献   

5.
Poly(methyl methacrylate) (PMMA) has been studied by photon correlation spectroscopy in the temperature range 120–150°C. The relaxation functions for longitudinal density fluctuations were determined and analyzed using the empirical function ?(t) = exp[?(t/τ)β]. The average relaxation times were calculated for each temperature and compared to mechanical and dielectric relaxation data. The agreement between the various techniques for the primary glass–rubber relaxation was good. The relaxation function observed by light scattering became increasingly broad as the temperature was lowered. This is similar to the results reported previously for poly(ethyl methacrylate) (PEMA). In fact, the light-scattering relaxation function is dominated by the secondary relaxations in these two polymers. Nevertheless, the average relaxation time 〈τ〉 is dominated by the longest relaxation times associated with the primary glass–rubber relaxation.  相似文献   

6.
The glass transition temperatures, Tg, of polystyrene, poly (vinyl chloride) and poly(methyI methacrylate) have been determined from gas chromatographic measurements using n-hexane, n-heptane, meta-xylene and para-xylene solvents. The glass transition temperatures were detected on the z-shaped retention diagrams which were produced from the plot of the logarithm of the specific retention volumes of the above-mentioned solvents against the reciprocal of temperature, i.e. log V g º vs. 1/T. The glass transition temperature is specified by the temperature where the slope of log V g º vs. 1/T changes abruptly. The observed glass transition temperature of polystyrene produced by this technique was found to be in good agreement with those produced by other techniques such as the differential scanning colorimeter. The industrial importance of the glass transition temperature, Tg, might be due to the dramatic changes in the physical properties of the polymer, such as hardness and elasticity, which take place in the vicinity of this temperature. However, perfectly crystalline polymers do not exhibit glass transitions, because their chains are incorporated in regions of three-dimensional order, called crystallites. Completely amorphous polymers and semi-crystalline polymers usually exhibit both glass transition and melting.  相似文献   

7.
The room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6] was found to be an efficient plasticizer for poly(methyl methacrylate), prepared by in situ radical polymerization in the ionic liquid medium; the polymers have physical characteristics comparable with those containing traditional plasticizers and retain greater thermal stability.  相似文献   

8.
Volume flow of poly(methyl methacrylate) (PMMA) (M?n = 43,000 and Tg = 384) has been measured in an Instron Capillary Rheometer. Elastic modulus of the longitudinal wave, longitudinal volume viscosity, initial longitudinal volume viscosity, and retardation times are described at temperatures above Tg (418–483K) and compression rates of about 1.00–200.00 × 105 s?1. An initial increase followed by a decrease in longitudinal volume viscosity has been observed as the compression rate increases and the volume deformation decreases, this last behavior being at the lowest values of the compression rate (6.0 and 30.0 × 10?5 s?1) a typical nonequilibrium one. ηL also increases with increasing temperature (Tg decreases 0.18°C/MPa), and volume flow activation energy decreases as the volume deformation increases.  相似文献   

9.
Sorption and dilation isotherms for argon in poly(ethyl methacrylate) (PEMA) are reported for pressures up to 50 atm over the temperature range 5–85°C. At temperatures below the glass transition (Tg=61°C), sorption isotherms are well described by the dual-mode sorption model; and isotherms above Tg follow Henry's law. However, isotherms for dilation due to sorption are linear in pressure at all temperatures over the range investigated. Partial molar volumes of Ar in PEMA are obtained from these isotherms. The volumes are approximately constant above Tg (about 40 cm3/mol), whereas the volumes below Tg are smaller and dependent on both temperature and concentration (19–26 cm3/mol). By analyzing the experimental data according to the dual-mode sorption and dilation model, the volume occupied by a dissolved Ar molecule and the mean size of microvoid in the glass are estimated to be 67 129 Å3, respectively. The cohesive energy density of the polymer is also estimated as 61 cal/cm3 from the temperature dependence of the dual-mode parameters.  相似文献   

10.
《European Polymer Journal》1986,22(11):911-919
Glass transition temperatures are reported for narrow MWD PMMA for a range of MW, where the polymer is (a) free of methanol, and (b) equilibrated with methanol. The relationship between the glass transition temperature and MW is discussed in terms of current empirical and thermodynamic theories.  相似文献   

11.
The specific isobaric heat capacities of poly (methylmethacrylates) (PMMA) having various tacticities were measured by the DSC method within a broad range of temperatures including the glass transition. Glasses with uniform thermal history were used in the measurements and the data were treated by employing a procedure which provided the thermodynamic Tg independent of the experimental conditions. The semiquantitative validity of Boyer's empirical relationT g ×cp=const. was confirmed; also it was found that within the limits of experimental accuracy the cp,g values at 298 K andC p,l values at 400 K are independent of the tacticity of the sample.Using the data thus measured and linearized equations representing the dependence ofT g on the content of iso-, syndio- and heterotriads, the Tg values of pure isotactic PMMA and pure syndiotactic PMMA were found to be respectively 315 K and 397 K.Dedicated to Professor Dr. F. H. Müller.  相似文献   

12.
Various amounts of n-alkylbenzenes (Cn: C6H5-CnH2n+1 (n = 3-16)) were doped into poly(methyl methacrylate) (PMMA) films, and the emission and thermal properties of each film were measured in detail together with their solid-state 13C NMR spectra. The aim of the present work was to estimate the size distribution of free volume in amorphous regions of polymer solids heavily doped with plasticizers by using Cn as models of a plasticizer. The excimer fluorescence yields of Cn in PMMA were found to depend on both the amount of Cn and the length of the alkyl chains of Cn, although the fluorescence spectra of all of the Cns in dilute fluid solution were almost the same. The quantitative analysis showed: (1) Cn with n ? 12 induces a phase separation in PMMA, in which almost all of the Cn molecules are in a separated phase, and thus they cannot penetrate regions in which PMMA chains are aggregated. This means that Cn with n ? 12 cannot enlarge the space between PMMA chains. (2) Smaller Cn (n < 11) can enter free volumes between PMMA chains that correspond to their molecular size, but they can enlarge them only to a limited extent. Thus, the amount by which plasticization can increase the free volume of PMMA is limited by the size of the dopant and the inherent free volume of the polymer matrix. (3) The efficiency of excimer formation was found to reveal the maximum amount of Cn that could fit in the free volume of PMMA. Thus our fluorescence measurements showed that PMMA solids that were plasticized to their limit had a free volume that was larger than the volume occupied by all the conformers of C5 and smaller than the volume occupied by almost all the conformers of C12. In conclusion, we were able to obtain information on plasticization and to demonstrate a method of monitoring microenvironments in polymer solids after they have been doped with plasticizers.  相似文献   

13.
We present Rayleigh-Brillouin light scattering data of highly syndiotactic poly(n-butyl methacrylate) [PBMA] whose glass transition temperature as measured by DSC is 55°C. The Brillouin peak shifts, Brillouin peak widths, and Landau-Placzek ratios from ?15 to 130°C are reported. The Brillouin peak widths decrease continuously through the glass transition region. This indicates a continual decrease in the strength of processes whose relaxation times are about 10?10 s with decreasing temperature even as the system becomes glassy. The Landau-Placzek ratio above the glass transition is about 3, indicating the high optical purity of our sample. This low Landau-Placzek ratio arises from the sample's homogeneous stereochemistry. Some of the anomalous behavior observed around 40–50°C in previous PBMA studies is explained in terms of syndiotactic regions within a largely atactic sample.  相似文献   

14.
The vacuum photodegradation at 30°C. of poly(methyl methacrylate) and copolymers with acrylaldehyde, methacrylaldehyde, and methyl acrylate has been studied. The polymers were examined in the form of expanded films as produced by a freeze-drying technique. At least one molecule of carbon monoxide is evolved for each chain scission. It is concluded that chain scission in poly(methyl methacrylate) is primarily the result of photoinduced aldehyde groups.  相似文献   

15.
In this study the effect of temperature on the generation of free radicals accompanying the decomposition of benzoyl peroxide in poly(methyl methacrylate) was studied. The concentration of the chain-end radicals was determined by the ESR method. The known nine-line spectrum of the chain-end radicals of poly(methyl methacrylate) was observed. This spectrum was affected by the contribution of chain radicals at higher temperatures. The dependence of the chain-end radical concentration on the annealing temperature of polymer found for different pressures gives information on the conditions under which free radicals arise and decay in the temperature range between 90 and 170°C at pressures ranging from 2000 to 12000 atm.  相似文献   

16.
17.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

18.
Slowly relaxing longitudinal density fluctuations in an optically perfect sample of bulk poly(n-hexyl methacrylate) (PHMA) have been studied by photon correlation spectroscopy in the temperature range 10–36°C. The glass transition temperature for this sample was measured to be Tg = −3°C by differential scanning calorimetry. The optical purity of the sample was verified by Rayleigh-Brillouin spectroscopy and the Landau-Placzek ratio was observed to be 2.3 at 25°C. Light-scattering relaxation functions were obtained over the time range 10−6-1 s. The shape of the relaxation functions broadened as the temperature was lowered towards the glass transition. Quantitative analysis of the results was carried out using the Kohlrausch-Williams-Watts (KWW) function to obtain average relaxation times, 〈τ〉, and width parameters, β. The width parameter decreased from 0.43 to 0.21 over the temperature interval, as suggested by visual inspection. Average relaxation times shifted with temperature in a manner consistent with previous mechanical studies of the primary glass-rubber relaxation in PHMA. The relaxation functions were also analyzed in terms of a distribution of relaxation rates, G(Γ). The calculated distributions were unimodal at all temperatures. The average relaxation times obtained from G(Γ) were in agreement with the KWW analysis, and the shape of the distribution broadened as the sample was cooled. The rate at which G(Γ) displayed a maximum correlated well with the corresponding frequency of maximum dielectric loss for PHMA. The temperature dependence of these two quantities could be reproduced with an Arrhenius activation energy of 21 Kcal/mol. A consistent picture of the molecular dynamics of PHMA near the glass transition requires a strong secondary relaxation process with a different temperature dependence from the primary glass-rubber relaxation. The present results suggest that the behavior of PHMA is similar to the other poly(alkyl methacrylates). © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Slow relaxing longitudinal density fluctuations in bulk syndiotactic poly (n-butyl methacrylate) [PBMA] were studied by photon correlation spectroscopy as a function of temperature from 70 to 90°C. The shape of the light-scattering relaxation function broadened as the temperature approached the glass transition (Tg = 55°C). The average relaxation time shifted with temperature, consistent with previous studies of PBMA. The relaxation functions were analyzed in terms of a distribution of relaxation rates. The calculated distribution was clearly bimodal and the shape altered with temperature. The higher frequency peak in the distribution corresponds well with previous mechanical and dielectric relaxation studies of the intramolecular relaxation of the acrylate ester side chain. The resolution of the distribution into two modes is due to a well-defined side-chain motion with relaxation strength comparable to the primary glass-rubber relaxation. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The structural instability of a polymer crystal may be due to the involvement of various lattice vibrations in nonlinear resonance. The condition of this involvement is the prevalence of intramode anharmonicity over intermode interaction. A model of phase transitions in polymers of the PMMA type was constructed. Below transition points, coherent states of orientational vibrations of heavy side pendants are formed. The thermodynamic characteristics of these states were found. The structural instability of the polymer lattice is a second-order phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号