首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Contributions to the Chemistry of Silicon-Sulphur Compounds. 46. 29Si-N.M.R. Chemical Shifts of Trialkoxysilylthio Derivatives of Permethylpolysilanes 29Si-N.M.R. chemical shifts of trialkoxysilythio derivatives of permethylpolysilanes of the two series: α, ω-(RO)3SiS(SiMe2)nSSi(OR)3, n = 2, 3, 4, 6 and 1-(RO)3SiS(SiMe2)nMe, n = 2, 4; R = i-Pr, t-Bu and also 31C-NMR shifts are given. The relationship of 29Si-NMR chemical shift from the netto charge at the silicon atom q(Si) which value has been corrected according to the Sandorfy C quantum-chemical model is discussed. The greater reduction of the electron density at silicon in compounds with Si? X bond (X = S, P, Cl) has been explained by a conjugation of the lone of sulphur with the Si? X bonding pair.  相似文献   

2.
In the presence of a catalytic amount of sodium methoxide, sym-dimethoxytetramethyldisilane was converted into α,ω-dimethoxypermethylpolysilanes, MeO(SiMe2)nOMe where n ? 3, at room temperature. On the other hand, similar treatment of the disilane in THF solution gave cyclic polysilanes, (Me2Si)n where n = 5–7. Decomposition of the disilane in the presence of diphenylacetylene afforded a trisilacyclopentene derivative under similar conditions. This compound was obtained also by the reaction between α,ω-dimethoxypermethylpolysilanes and diphenylacetylene in the presence of sodium methoxide. These cyclic products most likely were formed via permethyl polysilyl anion intermediates derived from α,ω-dimethoxypermethylpolysilanes. Also, the formation of α,ω-dimethoxypermethylpolysilanes could be elucidated in terms of the mechanism involving the base-assisted, concerted nucleophilic substitution or stepwise substitution by silyl anions, rather than the successive dimethylsilylene (Me2Si:) insertion reaction.  相似文献   

3.
The CuCl-catalyzed Reaction of Trimethylsilyl(t-butyl)chlorophosphane with Dimethylzirconocene: An Example for Tandem Catalysis t-BuP(SiMe3)Cl was prepared from t-BuP(SiMe3)2 and hexachloroethane and reacted in situ with Cp2ZrMe2 in the presence of catalytic amounts of copper(I) chloride yielding t-Bu(Me)P? P(Cl)t-Bu ( 1 ) (2 : 1 reaction) or t-Bu(Me)P? P · (Me)t-Bu ( 2 ) (1 : 1 reaction) and Cp2ZrCl(Me). To understand the course of reaction, the reaction of dimethylzirconocene with CuCl and the decomposition of t-BuP(SiMe3)Cl in the presence of CuCl and tetrachloroethene were studied. The results suggest that CuCl reacts with t-BuP(SiMe3)Cl in the presence of C2Cl4 to give t-Bu(Cl)P? P(Cl)t-Bu ( 3 ); simultaneously, CuCl reacts with Cp2ZrMe2 with formation of methylcopper, which reacts with 3 to give 1 or 2 , respectively.  相似文献   

4.
Treatment of LiC(SiMe2H)3]·2THF (1) with alkeny1chlorosilanes produced sterically hindered alkenylsilanes (410) of structure H2C=CH---(CH2)nSiRR′C(SiMe2H)3 (R=Me; R′=Me or Cl; n=0, 1, or 4). The Peterson reaction of 1 with carbonyl compounds gave sterically hindered olefins R(R′)C=C(SiMe2H)2. Pt or Rh catalyzed intramolecular hydrosilylation of H2C=CHSiMe2C(SiMe2H)3 (4) occurred to produce a new 1,3-disilacyclobutane derivative 15. Intermolecular hydrosilylation was favored for 5, 8, and 10, producing oligomeric products.  相似文献   

5.
Contribtions to the Chemistry of Silicon-Sulphur Compounds. XLIX. Reaction of Silicon-Sulphur Compounds with Glycols The reactions of Ph3SiSH, (RO)3SiSH, (RO)2Si(SH)2, cyclo-[(t-BuO)2SiS]2, and SiS2 with aliphatic glycols were investigated. Among other compounds representatives of a new group of silanethiols (t-BuO)2Si(SH)OrOSi(SH)(OBu-t)2 (r = pr; neopent)
  • 1 r = kohlenwasserstoffgerüst des Glykols: pr = ? CH2CH2CH2? , bu = ? CH2(CH2)2CH2? , hex = ? CH2(CH2)4CH2? , neopent = ? CH2C(CH3)2CH2? , pin = ? C(CH3)2C(CH3)2?
  • were obtained. Informations about the hydrolytic splitting of the Si? S bond of the prepared silanethiols were obtained by thiomercurimetric titration. A pathway of the reaction of SiS 2 with glycols is discussed.  相似文献   

    6.
    Contributions to the Chemistry of Silicon-Sulphur Compounds. XVI. Derivatives of Trialkoxysilanethiols with the Main Groups I and II Elements and Preparation of Pure Trialkoxysilanethiols Trialkoxysilanethiolates: (RO)3SiSMI and [(RO)3SiS]2MII (R 7dbond; Me, i-Pr, s-Bu, t-Bu, s-Am; MI ? Li, Na, K; MII ? Ca, Sr, Ba) were prepared in reaction of trialkoxysilanethiols and metals. Hydrates and THF solvates of these salts can also be formed. From sodium trialkoxysilanethiolates pure thiols (i-PrO)3SiSH and (s-BuO)3SiSH were prepared.  相似文献   

    7.
    Six bis(silyl)acetylenes (XMe2Si? C?C? SiMe2X) with the following varied silicon substituents X were prepared: 1 (Me, Me); 2 (H, H); 3 (C1, H); 4 (CI, CI); 5 (MeO, H); 6 (MeO, MeO). While 1 and 2 may be prepared by the reaction of dilithio- or bis(bromomagnesium)-acetylide with the appropriate chlorosilane, similar reactions designed to give 3–6 yielded oligomers, XMe2Si? (? C?C? SiMe2)n? X, 7, X=CI, MeO, as the major products, indicating that the acetylenic functionality on silicon activates the chlorosilane towards nucleophilic substitution. Compounds 3 and 4 were prepared by free radical chlorination of 2. Methanolysis of 3 and 4 gave quantitative yields of 5 and 6 respectively. Compounds 1–6 undergo a Diels–Alder reaction with α-pyrone to produce, after loss of carbon dioxide, bis(silyl)-substituted benzene derivatives. The order of reactivity has been determined to be: 4=6>3=5>1>2, indicating that chloro or alkoxy substituents favor the cycloaddition with 2- pyrone. The adducts formed by compounds 3–6 undergo an unusually facile hydrolysis or elimination to give 1,1,3,3-tetramethyl-1,3-disila-2-oxaindane.  相似文献   

    8.
    Reactions of Silylphosphines with Sulphur We report about reactions of Me2P? SiMe3 2 , MeP(SiMe3)2 3 , (Me3Si)3P 4 , P2(SiMe3)4 5 , and (Me3Si)3P7 1 with elemental sulphur. Without using a solvent 2 reacts very vigorously. The reactions with 3 and 4 show less reactivity which is even more reduced with 5 and 1 . With equivalent amounts of sulphur the reactions with 2 , 3 , 4 lead to compounds with highest content of sulphur. These compounds are Me3SiS? P(S)Me2 9 from 2 , (Me3SiS)2P(S)Me 13 from 3 and (Me3SiS)3P(S) 16 from 4 . Besides, the by-products (Me3Si)2S 8 , P2Me4 7 , and Me2P(S)? P(S)Me2 11 can be obtained. The reactions of silylphosphines in a pentane solution run much slower so that the formation of intermediates can be observed. Reaction with 2 yields Me3SiS? PMe2 6 and Me2P(S)PMe2 10 , which lead to the final products in a further reaction with sulphur. From 3 (Me3SiS)(Me3Si)PMe 14 and (Me3SiS)2PMe 12 can be obtained which react with sulphur to (Me3SiS)2P(S)Me 13. 4 leads to the intermediates (Me3SiS)(Me3Si)2P 18 , (Me3SiS)2(Me3Si)P 17 , (Me3SiS)3P 15 yielding (Me3SiS)3P(S) 16 with excess sulphur. Depending on the molar ratio (P2SiMe3)4 5 reacts to (Me3Si)2P? P(SSiMe3)(Sime3), (Me3SiS)(Me3Si)P? P(SSiMe3). (Diastereoisomer ratio 10:1), (Me3SiS)2P? P(SiMe3)2 and (Me3SiS)2P? P(SSiMe3)(Sime3). With the molar ratio 1:4 the reaction yields (Me3SiS)2P? P(SSiMe3)2 (main product), (Me3SiS)3P(S) and (Me3SiS)3P. All silylated silylphosphines tend to decompose under formation of (Me3Si)2S. (Me3Si)3P7 reacts with sulphur at 20°C (15 h) under decomposition of the P7-cage and formation of (Me3SiS)3P(S). The products of the reaction of 5 with sulphur in hexane solution (molar ratio more than 1:3) undergo readily further reactions at 60°C under cleavage of P? P bonds and splitting off (Me3Si)2S, leading to (Me3SiS)3P(S) and cage molecules like P4S3, P4S7, and P4S10 and P? S-polymers. (Me3SiS)3P(S) isi thermally unstable and decomposes to P4S10 and (Me3Si)2S. Sulphur-containing silylphosphines like (Me3SiS)P(S)Me2 react with HBr at ?78°C under formation of Me3SiBr (quantitative cleavage of the Si? S bond) and Me2P(S)SH, which reacts with HBr to produce H2S and Me2P(S)Br.  相似文献   

    9.
    Investigations on the Formation of Silylated iso-Tetraphosphanes We investigated the formation of iso-tetraphosphanes by reacting [Me(Me3Si)P]2PCl 4 , Me(Me3Si)P? P(Cl)? P(SiMe3)2 8 , Me(Me3Si)P? P(Cl)? P(SiMe3)(CMe3) 9 , [Me(Me3Si)P]2PCl 20 , Me3C(Me3Si)P? P(Cl)? P(SiMe3)2 21 , and [MeC(Me3Si)P]2PCl 22 with LiP(SiMe3)Me 1 , LiP(SiMe3)2 2 , and LiP(SiMe3)CMe3 3 , respectively, to elucidate possible paths of synthesis, the influence of substituents (Me, SiMe3, CMe3) on the course of the reaction, and the properties of the iso-tetraphosphanes. These products are formed via a substitution reaction at the P2Cl group of the iso-triphosphanes. However, with an increasing number of SiMe3 groups in the triphosphane as well as in reactions with LiP(SiMe3)Me, cleaving and transmetallation reactions become more and more important. The phosphides 1,2, and 3 attack the PC1 group of 4 yielding the iso-tetraphosphanes P[P(SiMe3)Me]3 5, [Me(Me3Si)P]2P? P(SiMe3)2 6 and [Me(Me3Si)P]2P? P(SiMe3)CMe3 7. I n reactions With 8 and 9, LiP(SiMe3)Me causes bond cleavage and mainly leads to Me(Me3Si)P? P(Me)? P(SiMe3)2 13 and Me(Me3Si)P? (Me)? P(SiMe3)CMe3 16, resp., and to monophosphanes; minor products are [Me(SiMe3)P]2P? P(SiMe3)2 6 and [Me(Me2Si)P]2P? P(SiMe3)CMe2 7. LiP(SiMe3)2 2 and LiP(SiMe3)CMe2 3 with 8 and 9 give Me(Me3,Si)P? P[P(SiMe3)2]2 10, Me(Me2Si)P? P[P(SiMe3)CMe2]? P(SiMe3)2 11, and Me(Me3Si)P? P[P(SiMe3)CMe3]2 12 as favoured products. With 20, LiP(SiMe3)2 2 forms P[P(SiMe3)2]3 28. Bond cleavage products are obtained in reactions of 20 with 1 and 2, of 21 with 1, 2, and 3, and of 22 with 1 and 2. P[P(SiMe3)CMe3]3 23 is the main product in the reaction of 22 with LiP(SiMe3)CRle2 3. In the reactions of 22 with 1, 2, and 3 the cyclophosphanes P3(CMe3)2(SiMe3)25, P4[P(SiMe3)CMe3]2(CMe3)2 26, and P5(CMe3)4(SiMe3) 27 are produced. The formation of these rom- pounds begins with bond cleavage in a P- SiMe, group by means of the phosphides. The thermal stability of the iso-tetraphosphanes decreases with an increasing number of silyl groups in the molecule. At 20O°C compounds 5, 7, and 23 are crystals; also 6 is stable; however, 10, It, 12, and 28 decompose already.  相似文献   

    10.
    The preparation and properties of diprimary α,ω-bis-phosphino-alkanes of the general structure H2P(CH2)n PH2 (n = 1, 2, 3, 4) are described. Their reactions with N-hydroxymethyl-dialkylamines and with olefins, which yield ditertiary α,ω-bisphosphino-alkanes, (R2NCH2)2P(CH2)nP(CH2NR2)2 and R2P(CH2)nPR2, respectively, are also reported. The physical properties of two new α,ω-bis-dialkylphosphinyl-alkanes have been determined.  相似文献   

    11.
    Formation and Structure of iso-Tetraphosphane P[P(SiMe3)Me]3 The reaction of MeP(SiMe3)2 with PCl3 (molar ratio 3:1, ?78°C, n-pentane) yields by cleaving of the P? Si bond P[P(SiMe3)Me]3 1 with Cl2P? P(SiMe3)Me and ClP[P(SiMe3)Me]2 as intermediates. The reaction rate decreases by the increase of phosphorylation. The last reaction step (formation of 1 ) occurs while warming up to room temperature. 1 forms colorless hexagonal crystals, melting point 65 ± 1°C. Tris(trimethylsilyl-methyl-phosphino)phosphane 1 crystallizes monoclinically in the space group Cc (No. 8) with Z = 8 formula units per unit cell. The molecules possess approximated C3 symmetry and have (RRR) and (SSS) configurations, respectively. The bond distances d?(P? P) = 220.1 pm, d?(P? C) = 186.5 pm, and d?(P? Si) = 225.2 pm are normal and within the expected range of known distances. According to repulsive interactions between the non bonded electron pairs of the terminal P atoms and the protons of the methyl groups the angles at the central and terminal P atoms are enlarged to ? P P P = 105.1° and ? P P C = 106.9°, respectively.  相似文献   

    12.
    The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

    13.
    Dilithiated di(stannyl)oligosilanes (tBu2Sn(Li)– (SiMe2)n–Sn(Li)tBu2; 4 , n = 2; 5 , n = 3) were synthesized by the reaction of lithium diisopropylamide (LDA) with the α,ω‐hydrido tin substituted oligosilanes (tBu2Sn(H)– (SiMe2)n–Sn(H)tBu2; 1 , n = 2; 2 , n = 3). Surprisingly, the reaction of 1 and 3 (tBu2Sn(H)–(SiMe2)4–Sn(H)tBu2) with LDA resulted not in the formation of the lithiated compound, but what one can find is the formation of the 5,5‐ditert.butyl‐octamethyl‐1,2,3,4‐tetrasila‐5‐stannacyclopentane ( 8 ) (n = 4) in addition to the expected product 4 (n = 4) and the 3,3,6,6‐tetratert.butyl‐octamethyl‐1,2,4,5‐tetrasila‐3,6‐distannacyclohexane ( 7 ) (n = 3). Reactions of 4 and 5 with dimethyl and diphenyldichlorosilanes yielding monocyclic Si–Sn derivatives ( 9 – 11 ) are also discussed. The solid‐state structures of 7 and 11 were determined by X‐ray crystallography.  相似文献   

    14.
    Lithiated Siloxy-silylamino-silanes — Preparation and Reactions with Chlorodimethylsilane The siloxy-silylamino-silanes (Me3SiO)Me3–nSi(NHSiMe3)n ( 1 : n = 1, 2 : n = 2, 3 : n = 3) are obtained by coammonolysis of the chlorosiloxysilanes (Me3SiO)Me3–nSiCln (n = 1–3) with chlorotrimethylsilane. The reaction of 1, 2 , and 3 with n-butyllithium in appropriate molar ratio in n-hexane gives the siloxy-silylamido-silanes (Me3SiO)Me3–nSi(NLiSiMe3)n ( 4 : n = 1, 5 : n = 2, 6 : n = 3), which were spectroscopically characterized (IR, 1H-, 7Li-, 29Si-NMR) and allowed to react in solution (n-hexane, THF) with Me2Si(H)Cl. 4 reacts to the N-substitution product (Me3SiO)Me2SiN(SiMe3)SiMe2H 7, 5 to (Me3SiO)MeSi[N(SiMe3)SiMe2H](NHSiMe3) 8 , (Me3SiO)MeSi[N(SiMe3)SiMe2H]2 9 and to the cyclodisilazane 10. 6 gives in THF the cyclodisilazanes 11 : R = H; 12 : R = HMe2Si) and ( 13 , in n-hexane only 11 in small amounts. An amide solution of 2 with n-butyllithium in the molar ratio 1:1 in n-hexane leads to 8 (main product), 2 and 10; in THF 10 and 2 are obtained nearly in same amounts and 8 and 9 as byproducts. The amide solutions of 3 with n-butyllithium in the molar ratio 1:1 and 1:2, resp., show nearly the same behaviour in n-hexane and THF. In THF 3, 11 , and 12 and in n-hexane 3, 11, 12 , and (Me3SiO)Si[N(SiMe3)SiMe2H](NHSiMe3)2 14 are formed.  相似文献   

    15.
    The reaction of thioquinanthrene 1 with sodium alkoxides and α,ω-dihaloalkanes leads to the formation of α,ω-bis[4-(4-methoxy-3-quinolinylthio)-3-quinolinylthio]alkanes 4 . The yield depends on the nature of α,ω-dihalo-alkanes. The effect of α,ω-dihaloalkanes of the following types: XCH2X (X = Cl,Br,I), X(CH2)2X (X = Cl,Br,I), Br(CH2)3Br and Br(CH2)6Br were studied. The preparation of 4-alkoxy-3′-(ω-bromoalkylthio)-3,4′-diquinolinyl sulfide 3 and their transformation to α,ω-bis(4-alkoxy-3-quinolinylthio)alkanes 6 were studied as well.  相似文献   

    16.
    Tris-trimethylsilyl-tert.butyl-cyclotetraphosphane P4(SiMe3)3CMe3 1 , which was previously unknown in the series of the cyclotetraphosphanes P4(SiMe3)nCMe34-n, n = 0?4, could be obtained by the reaction of P3(SiMe3)5 with Me3CPCl2. 1 froms intensely coloured yellow crystals, melting point 143 ± 2°C. The 31P- and 1H-NMR data of 1 are given.  相似文献   

    17.
    Fluorine Exchange in Trifluorophosphine Metal Complexes. IX1. (Reactions of Tetrakis(trifluorophosphine)nickel(0) with Alkyl(trimethylsilyl)amines and Amides2) Alkylaminodifluorophosphine complexes Ni(PF3)4-n(PF2NHR)n (n = 1, 2, 3) 8–11 and Me3SiF are obtained, if alkyl(trimethylsilyl)amines NHR(SiMe3) (R?CH3 and n-C4H9) are reacted with Ni(PF3)4 ( 1 ). The mechanism of these peripheric reactions is discussed by assuming a four centered type intermediate. However reactions of 1 with the lithium amides LiNR(SiMe3) (R = CH3, C2H5, n-C4H9, and C6H5) yield LiF and the difluorotrimethylsilylaminophosphine complexes Ni(PF3)4-n[PF2NR(SiMe3)]n (n = 1, 3, 4) 12–18 .  相似文献   

    18.
    Desactivation of Catalysts in the Polymerization of Acetylene by Bis(trimethylsilyl)acetylene Complexes of Titanocene or Zirconocene Unexpected inactive byproducts were observed in the catalytic polymerization of acetylene using metallocene alkyne complexes Cp2M(L)(η2-Me3SiC2SiMe3), 1 : M = Ti, without L; 2 : M = Zr, L = thf. The reaction of 1 was investigated in detail by NMR to give quantitatively at –20 °C the titanacyclopentadiene Cp2Ti–CH=CH–C(SiMe3)=C(SiMe3) ( 3 ). Around 0 °C 3 starts to rearrange to yield the dihydroindenyl complex 4 via coupling of one Cp-ligand with the titanacyclopentadiene. In the reaction of 2 under analogous conditions a zirconacyclopentadiene Cp2Zr–CH=CH–C(SiMe3)=C(SiMe3) ( 5 ) and the dimeric complex [Cp2Zr(C(SiMe3)=CH(SiMe3)]2[μ-σ(1,2)-C≡C] ( 6 ) were observed. Whereas 5 decomposes to a mixture of unidentified paramagnetic species, 6 was isolated and investigated by NMR spectroscopy and X-ray analysis. In the reaction of rac-(ebthi)Zr(η2-Me3SiC2SiMe3) (ebthi = ethylenbistetrahydroindenyl) with 2-ethynyl-pyridine the complex rac-(ebthi)ZrC(SiMe3)=CH(SiMe3)](σ-C≡CPy) 7 was obtained, which was investigated by an X-ray analysis.  相似文献   

    19.
    Formation of Organosilicon Compounds. 105. Reactions of (Cl3Si)2C?PMe2Cl with Silylphosphanes The reaction of (Cl3Si)2C?PMe2Cl 1 with MeP(SiMe3)2 proceeds at 130°C (15 hrs.), by cleavage of all Si? P bonds to compounds 2, 3, 4, 5 . The course of this reaction incorporates a number of stages of which the compounds (Cl3Si)2C? PMe2? P(Me)SiMe3, (Cl3Si)2C?PMe2? PMe? P(Me)SiMe3 and ClP(Me)SiMe3 are important and are yet to be isolated. The reaction of (Cl3Si)2C?PMe2Cl with LiP(SiMe2)2 produces compound 2 as well as p2(SiMe3)4 and P(SiMe3)3. The formation of 2 can be explained by the initial formation of the intermediate (Cl3Si)2C?PMe2? P(SiMe2)2 with reacts with 1 to produce 2 and (ClP(SiMe)3)2. The formation of P2(SiMe3)4 is also explained by the reaction of ClP(SiMe3)2 with LiP(SiMe3)4. The reaction of (Cl3Si)2C?PMe2C(H)PMe2 at 130°C/15–20 hrs. is related to the formation of (Me3Si)2C(H)Pme2 from corresponding Si-methylated phosphorylides with the exception that, at 0°C, this reaction goes to completion within a few minutes.  相似文献   

    20.
    Methyl Metal Bis(trimethylsilyl)amido Derivatives of Aluminium, Gallium, and Arsenic MeAl[N(SiMe3)2]2 (Me ? CH3) has been prepared by the reaction of AlMe3 with HN(SiMe3)2 in a 1:2 molar ratio. The homologue Gallium compound (as well as the Aluminium derivative) is formed in good yields by the interaction of MeMcl2 (M = Al, Ga) with Li- and Na[N(SiMe3)2], respectively. MeAs[N(SiMe3)2]2 is formed by the reaction of AsCl3 and Na[N(SiMe3)2] in a 1:3 molar ratio. These colourless amido derivatives are monomeric in solution, they have been characterized by analyses, mass, n.m.r. (1H and 13C), and especially by i.r. and Raman spectra.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号