首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reaction of [Pt25-C5Me5)2(η-Br)3]3+(Br)3 with C5R5H (R = H,Me) in the presence of AgBF4 gives the first platinocenium dications, [Pt(η5-C5Me5)(η5-C5R5)]2+(BF4 )2. On electrochemical reduction, [pt(η5-C5Me5)2]2+ yields [Pt(η4-C5Me5H)(η2-C5Me5)]+ BF4. kw]Cyclopentadienyl; Metallocenes; Platinum; Electrochemistry  相似文献   

3.
4.
5.
6.
Reaction of [Cp* RuCl2]2 with -alanine ( -alaH) in methanol at room temperature in the presence of NaOMe yields the complex Na[Cp* RuCl( -ala)] (1), which contains a five-membered N,O-coordinated chelate ring. The analogous complex Na[Cp* RuCl( -phe)] (2) is obtained under similar conditions but at 0°C in 90% yield. At temperatures above 20°C both 2 and the η6-coordinated complex [Cp* Ru( -pheH)]Cl (4) are obtained, with the proportion of the latter increasing with temperature. Compound 4 is obtained in 88% yield by refluxing [Cp* RuCl2]2 and -phenylalanine ( -pheH) in CH3OH/CH3ONa followed by separation from 2. The analogous ruthenium(II) sandwich complexes 510 were obtained from -tyrosine and -tryptophane and various derivatives. [Cp* Ru( -met)] (3), prepared by the reaction of [Cp* RuCl2]2 with -methionine ( -metH) in CH3OH/CH3ONa, displays N,O,S-coordination.  相似文献   

7.
π‐Allyl (η3‐C3H5), a four‐electron donor, was used as a ligand model to replace η5‐C5Me4SiMe3 in DFT calculations on the tetranuclear yttrium polyhydrido complex (η5‐C5Me4SiMe3)4Y4H8 containing a Y4H8 tetrahedral core structure, which may separate the four π‐allyl groups and hence suppress the allyl ligand coupling during the computation. In terms of the calculated core geometry, isomerization energy barrier, charge population, and frontier orbital features of the complex, the η3‐C3H5 ligand model is comparable to η5‐C5H5. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

8.
9.
10.
The neutral complexes (η5-C5H5NiXL (X = Cl, L = PPh3 (I); L = PCy3 (II); X = Br, L = PPh3 (III); L = PCy3 (IV); X = I, L = PPh3 (V); L = PCy3 (VI)) have been obtained by treating NiX2L2 with thallium cyclopentadienide. The same reaction in the presence of TlBF4 gives cationic derivatives [(η5-C5H5)NiL2]BF4 (L = 2PPh2Me (VII); L = dppe (VIII)), whereas mononuclear complexes containing two different ligands (L2 = PPh3 + PCy3 (IX)) or dinuclear [(η5-C5H5)Ni(PPh3)]2dppe(BF4)2 (X) are obtained from the reaction of III with TlBF4 in the presence of a different ligand. Reduction of cationic complexes with Na/Hg gives very unstable nickel(I) derivatives (η5-C5H5)NiL2, which could not be isolated purely. Similar reduction of neutral complexes under CO gives a mixture of decomposition products containing [(η5-C5H5)Ni(CO)]2 and nickel(o) carbonyls, whereas in the presence of acetylenes, dinuclear [(η5-C5H5)Ni]2(RCCR′) (R = R′ = Ph; R = Ph, R′ = H) are obtained.  相似文献   

11.
12.
13.
14.
The first title metallocene, 1,3‐bis(dichlorotitanocene)‐1,1,3,3‐tetramethyldisiloxane dichloromethane solvate, [(η5‐C5H5)­TiCl2­(η5‐C5H4­Si­Me2)]2O·­CH2Cl2, (I), crystallizes in space group P21/c. Compound (I) represents the first crystal structure of a bimetallic siloxy‐bridged titanocene. The geometric parameters of (I) are similar to those of the parent titanocene; however, the disiloxane substituents adopt an unexpected eclipsed conformation. The second title metallocene, 1,3‐bis­[(penta­methyl­cyclo­penta­dienyl)­(cyclo­penta­dien­yl)­titanium dichloride]‐1,1,3,3‐tetra­methyl­disiloxane, [(η5‐C5‐Me5)­TiCl2­(η5‐C5H4­Si­Me2)]2O, (II), represents the second crystal structure of a bimetallic siloxy‐bridged titanocene and crystallizes in the space group P21/n. Compound (I) possesses non‐crystallographic twofold molecular symmetry and both metal centers adopt pseudo‐tetrahedral geometries. The geometric parameters of (II) are similar to those of the mixed titanocene Cp*CpTiCl2 (Cp* = C5Me5) and the disiloxane substituents adopt a staggered conformation.  相似文献   

15.
16.
17.
18.
19.
New substituted η3-allyl(η5-cyclopentadienyl)dicarbonylmanganese cations have been prepared as their tetrafluoroborates. They readily add a wide range of nucleophiles yielding η2-alkene(η5-cyclopentadienyl)dicarbonylmanganese complexes. Of the latter, in general only those involving terminal alkenes are sufficiently stable to permit ready isolation; otherwise metal-free alkenes are obtained. Regioselectivity in these additions depends on the nucleophile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号