首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative rate constants for the reactions of hydroxyl radicals with a series of alkyl substituted olefins were measured by competitive reactions between pairs of olefins at 298 ± 2 K and 1 atmospheric pressure. Hydroxyl radicals were produced by the photolysis of H2O2 with 254-nm irradiation. The obtained rate constants were (× 10?11 cm3 molecule?1 s?1): 2.53 ± 0.06, propylene; 5.49 ± 0.17, cis-2-butene; 5.47 ± 0.1, isobutene; 6.46 ± 0.13, 2-methyl-1-butene; 6.37 ± 0.16, cis-2-pentene; 6.23 ± 0.1, 2-methyl-1-pentene; 8.76 ± 0.14, 2-methyl-2-pentene; 6.24 ± 0.08, trans-4-methyl-2-pentene; 10.3 ± 0.1, 2,3-dimethyl-2-butene; 9.94 ± 0.1, 2,3-dimethyl-2-pentene; 5.59 ± 0.07, trans-4,4-dimethyl-2-pentene. A trend in alkyl substituent effect on the rate constant was found, which is useful to predict kOH on the basis of the number of alkyl substituents on the double bond.  相似文献   

2.
Solvation of interacting species decreases the rate constant in liquid phase reaction of radicals with nitrons. The value of k depends on the inductive properties of nitron substituents and attacking radicals. With increasing dipole moments of reacting molecules, the k value increases.
() . . .
  相似文献   

3.
The rate constants for the gas-phase reactions of isopropyl- and tert-butylperoxy radicals with nitric oxide (NO) have been studied at 298 +/- 2 K and a total pressure of 3-4 Torr (He buffer) using a laser flash photolysis technique coupled with a time-resolved negative-ionization mass spectrometry. The alkyl peroxy radicals were generated by the reaction of alkyl radicals with excess O(2), where alkyl radicals were prepared by laser photolysis of several precursor molecules. The rate constants were determined to be k(i-C(3)H(7)O(2) + NO) = (8.0 +/- 1.5) x 10(-12) and k(t-C(4)H(9)O(2) + NO) = (8.6 +/- 1.4) x 10(-12) cm(3) molecule(-1) s(-1). The results in combination with our previous studies are discussed in terms of the systematic reactivity of alkyl peroxy radicals toward NO.  相似文献   

4.
Rate constants have been measured by pulse radiolysis for the reactions of the NO3 radical with five cyclic ethers and a series of alcohols. Rate constants ranged from 3.5 × 104 M×1 s×1 for deuterated methanol to 1.1 × 107 M?1 s?1 for tetrahydrofuran. The rate constants for the reactions of NO3 with the alcohols 1-propanol to 1-heptanol were found to be linearly dependent on the number of CH3 groups with a group reactivity of 6.4 × 105 M?1 s?1.  相似文献   

5.
6.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

7.
Rate constants for reactions of benzyl, o-niethylbenzyl and p-meihylbenzyl radicals with O2 and NO have been measured at room temperature. The radicals were generated by UV flash photolysis and the time decay measured by absorption at ≈ 300 nm. The rate constants are: benzyl (0.99 ± 0.07 and 9.5 ± 1.2), o-methylbenzyl (1.2 ± 0.07 and 8.6 ± 0.8) and p-mithyl-benzyl (1.1= 0.10 and 8.9 = 0.9) for O2 and NO respectively in units of 10?12 cm3 molecule?1 s?1.  相似文献   

8.
Using the recently detected intense UV absorption spectrum of
absolute rate constants have been measured for its gas phase cycloaddition to C2H4, CH3CHCH2, t-C4H8, C2H2 and C2H5CCH. The values at T = 25°C range from 4.3 × 107 to 7.9 × 108 M−1 s−1 and their variation with substrate structure follows an electrophilic trend similar to the ones established for the reactions of halomethylenes.  相似文献   

9.
For a number of hydrofluorocarbons (HFCs), EHez has been found to have a linear correlation with each of the following: (i) log (k/n); (ii) A/n; and (iii) Ea/R, where EH = HOMO energy of the molecule, z = average fractional positive charge on the abstractable hydrogen atom in the molecule, k = rate constant of the gas-phase H abstraction reaction of the molecule with OH radical at 298 K, n = number of abstractable H atoms in the molecule, A = preexponential factor, and Ea/R = activation temperature of the said reaction. These correlations have been used to estimate the temperature dependent rate constants for the reactions of OH radical with CF3CF2CH2CH2CF2CF3, CF3CH2CF2CH2CF3, CF3CF2CH2CH2F, CF3CH2CH3, CF3CH2CHF2, CF3CHFCH2F, and CHF2CHFCHF2 as {6.97 × 10−13 exp(1481/T)}, {5.43 × 10−13 exp(1754/T)}, {7.95 × 10−13 exp(l308/T)}, {8.0 × 10−13 exp(1300/T)}, {7.03 × 10−13 exp(1470/T)}, {7.33 × 10−13 exp(1417/T)}, and {8.09 × 10−13 exp(1285/T)}, respectively. These have not yet been measured experimentally. Linear correlation between EHez and log (k/n) has also been observed for nine halogen substituted acetaldehydes. On the other hand, EH is found to have a better linear correlation with log (k/n) than EHez in the case of fluorinated ethers and alcohols where the available experimental data are at present limited. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 187–194, 1997.  相似文献   

10.
It is only since 1985 that the absolute rate constanss have been measured for some reactions of divalent silylene species. In this article the absolute rate constant data reported to date for the reactions of SiH2, SiMe2, SiMePh, SiHCl, SiCl2, SiF2 and SiBr2 are reviewed and, where possible, mechanistic pathways discussed. The reactivity of silylenes is, in general, much higher than had previously been estimated on the basis of relative rate studies.  相似文献   

11.
The flash photolysis of biacetyl produces CO, C2H6, and CH3COCH3 as main products, and in small amounts CO2, C2H4, and CH3CHO. The rate constants of reactions (2) and (3) of thermally equilibrated radicals were calculated from the amounts of products: .  相似文献   

12.
Perfluorobutylperoxyl radicals were produced by radiolytic reduction of perfluorobutyl iodide in aerated methanol solutions. Rate constants for the reactions of this peroxyl radical with various organic compounds were determined by kinetic spectrophotometric pulse radiolysis. The rate constants for alkanes and alkenes were determined by competition kinetics using chlorpromazine as a reference. The results indicate that hydrogen abstraction from aliphatic compounds takes place with a rate constant that is too slow to measure in our system (<105 M?1 s?1), and that abstraction of allylic and doubly allylic hydrogens is slow compared with addition. Addition to alkenes takes place with rate constants of the order of k = 106 ? 108 M?1 s?1. Good correlation was obtained between log k and the Taft substituent constants σ* for the various substituents on the double bond. Perfluorobutylperoxyl radical is found to be more reactive than trichloromethylperoxyl and other peroxyl radicals.  相似文献   

13.
The laser photolysis–resonance fluorescence technique has been used to determine the absolute rate coefficient for the Cl atom reaction with a series of ethers, at room temperature (298 ± 2) K and in the pressure range 15–60 Torr. The rate coefficients obtained (in units of cm3 molecule−1 s−1) are dimethyl ether (1.3 ± 0.2) × 10−10, diethyl ether (2.5 ± 0.3) × 10−10, di‐n‐propyl ether (3.6 ± 0.4) × 10−10, di‐n‐butyl ether (4.5 ± 0.5) × 10−10, di‐isopropyl ether (1.6 ± 0.2) × 10−10, methyl tert‐butyl ether (1.4 ± 0.2) × 10−10, and ethyl tert‐butyl ether (1.5 ± 0.2) × 10−10. The results are discussed in terms of structure–reactivity relationship. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 105–110, 2000  相似文献   

14.
The pulsed laser photolysis‐resonance fluorescence technique has been used to determine the absolute rate coefficient for the Cl atom reaction with a series of ketones, at room temperature (298 ± 2) K and in the pressure range 15–60 Torr. The rate coefficients obtained (in units of cm3 molecule−1 s−1) are: acetone (3.06 ± 0.38) × 10−12, 2‐butanone (3.24 ± 0.38) × 10−11, 3‐methyl‐2‐butanone (7.02 ± 0.89) × 10−11, 4‐methyl‐2‐pentanone (9.72 ± 1.2) × 10−11, 5‐methyl‐2‐hexanone (1.06 ± 0.14) × 10−10, chloroacetone (3.50 ± 0.45) × 10−12, 1,1‐dichloroacetone (4.16 ± 0.57) × 10−13, and 1,1,3‐trichloroacetone (<2.4 × 10−12). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 62–66, 2000  相似文献   

15.
An electron paramagnetic resonance (EPR ) technique was used to show that simple alkyl radicals readily abstract hydrogen from 1,4-cyclohexadiene. Rate constants for the reaction were ca. 104–105 M?1 s?1 at 300 K and activation energies 5–7 kcal mol?1. For the stabilized radicals, allyl and benzyl, the rate constants were <102 M?1 s?1 at 300 K. The data suggest that 1,4-cyclohexadiene could be used as an effective trap to probe rearrangement reactions of carbon centered radicals and biradicals.  相似文献   

16.
[reaction: see text] N-Aryl-5,5-diphenyl-4-pentenamidyl radicals (3) were produced by 266 nm laser-flash photolysis of the corresponding N-(phenylthio) derivatives, and the rate constants for the cyclizations of these radicals were measured directly. The 5-exo cyclization reactions were fast (k(c) > 2 x 10(5) s(-1)), and radicals 3 generally behaved as electrophilic reactants with a Hammett correlation of rho = 1.9 for five of the six radicals studied. However, the p-methoxyphenyl-substituted radical 3f cyclized much faster than expected from the Hammett analysis. Variable temperature studies of parent radical 3a (aryl = phenyl) gave an Arrhenius function with log k = 9.2 - 4.4/2.3RT (kcal/mol). The rate constant for the reaction of p-ethylphenyl-substituted anilidyl radical 3b with Bu(3)SnH at 65 degrees C was k(T) = 4 x 10(5) M(-1) s(-1).  相似文献   

17.
Absolute rate constants were determined at 298 K for the gas phase reactions of hydroxyl radicals with several C5 through C7 aliphatic alcohols and ethers using the flash photolysis resonance fluorescence technique. The values obtained (in units of 10?12 cm3 molecule?1 s?1) were: 3-methyl-2-butanol, (12.4 ± 0.7); 2-pentanol, (11.8 ± 0.8); 3-pentanol, (12.2 ± 0.7); cyclopentanol, (10.7 ± 0.7); 1-hexanol, (12.4 ± 0.7); 2-hexanol, (12.1 ± 0.7); 1-heptanol, (13.6 ± 1.3); methyl-n-butylether, (16.4 ± 0.6); ethyl-n-butylether, (22.8 ± 0.9); ethyl-t-butylether, (8.12 ± 0.32); and methyl-t-amylether, (7.91 ± 0.42). These results are discussed in terms of group reactivities in such molecules and are compared with values estimated from an additive structure-reactivity index.  相似文献   

18.
Rate coefficients for the gas‐phase reaction of isoprene with nitrate radicals and with nitrogen dioxide were determined. A Teflon collapsible chamber with solid phase micro extraction (SPME) for sampling and gas chromatography with flame ionization detection (GC/FID) and a glass reactor with long‐path FTIR spectroscopy were used to study the NO3 radical reaction using the relative rate technique with trans‐2‐butene and 2‐buten‐1‐ol (crotyl alcohol) as reference compounds. The rate coefficients obtained are k(isoprene + NO3) = (5.3 ± 0.2) × 10?13 and k(isoprene + NO3) = (7.3 ± 0.9) × 10?13 for the reference compounds trans‐2‐butene and 2‐buten‐1‐ol, respectively. The NO2 reaction was studied using the glass reactor and FTIR spectroscopy under pseudo‐first‐order reaction conditions with both isoprene and NO2 in excess over the other reactant. The obtained rate coefficient was k(isoprene + NO2) = (1.15 ± 0.08) × 10?19. The apparent rate coefficient for the isoprene and NO2 reaction in air when NO2 decay was followed was (1.5 ± 0.2) × 10?19. The discrepancy is explained by the fast formation of peroxy nitrates. Nitro‐ and nitrito‐substituted isoprene and isoprene‐peroxynitrate were tentatively identified products from this reaction. All experiments were conducted at room temperature and at atmospheric pressure in nitrogen or synthetic air. All rate coefficients are in units of cm3 molecule?1 s?1, and the errors are three standard deviations from a linear least square analyses of the experimental data. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 57–65, 2005  相似文献   

19.
Using a relative rate method, rate constants for the gas‐phase reactions of OH radicals with allyl alcohol, 3‐buten‐1‐ol, 3‐buten‐2‐ol, and 2‐methyl‐3‐buten‐2‐ol have been measured at 296 ± 2 K and atmospheric pressure of air. Using 1,3,5‐trimethylbenzene as the reference compound, the rate constants (in units of 10−11 cm3 molecule−1 s−1) were: allyl alcohol, 5.46 ± 0.35; 3‐buten‐1‐ol, 5.50 ± 0.20; 3‐buten‐2‐ol, 5.93 ± 0.23; and 2‐methyl‐3‐buten‐2‐ol, 5.67 ± 0.13; where the indicated errors are two least‐squares standard deviations and do not include the uncertainty in the rate constant for 1,3,5‐trimethylbenzene. The H‐atom abstraction products acrolein and methyl vinyl ketone were observed from the allyl alcohol and 3‐buten‐2‐ol reactions, respectively, with respective yields of 5.5 ± 0.7 and 4.9 ± 1.4%. No evidence for formation of acrolein from 3‐buten‐1‐ol or 3‐buten‐2‐ol was obtained, with upper limits to the acrolein yields of ≤1.2 and ≤0.5%, respectively, being determined. Reaction mechanisms are discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 142–147, 2001  相似文献   

20.
The kinetics of liquid phase chlorination of methane in a difluorodichloromethane medium has been studied in a temperature interval of 293–150 K. The value of activation energy found for the hydrogen abstraction stage by a chlorine atom (E1) equals 14.2 ± 2.5 kJ/mol, with the processes of chlorine atoms recombination and the cage effect being taken into account. The method of competitive reactions has been employed to assess the constants of reaction of chlorine atoms (k1) with ethane, propane, hexane, ethylene, allyl bromide, allyl chloride, ethyl chloride, and cyclohexane in nonpolar solvents, viz. difluorodichloromethane and 1,2-dibromotetrafluoroethane. The values (k1) obtained in the liquid phaseare two to four orders lower than those in the gas phase, while the activation energy is 2–6 kJ/mol higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号