首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contributions to the Chemistry of Phosphorus. 200. Tetraisopropyl-tetradecaphosphane(4), P14(i-Pr)4 – Preparation and Structural Characterization Tetraisopropyl-tetradecaphosphane(4) ( 1 ) has been obtained by reacting i-PrPCl2, P4, and magnesium and subsequently thermolysing the crude reaction product, and has been isolated in pure form. Whereas the 31P{1H}-NMR spectrum provides only limited structural information, the 13C{1H, 31P}-DEPT-NMR and the 1H{31P}-NMR spectrum of 1 reveals the presence of two symmetrical configurational isomers 1a and 1c and one asymmetrical diastereomer 1b . This would only be possible, if 1 is 3,4,10,11-tetraisopropyl-hexacyclo[6.6.0.02,6.05,14.07,12.09,13]tetradecaphosphane. When crystallizing 1 pure 1a precipitates, which at +10°C in solution is retransformed into the isomeric mixture 1a , 1b , 1c by inversion of the configuration.  相似文献   

2.
Contributions to the Chemistry of Phosphorus. 222. Pentaisopropyltridecaphosphane(5), P13iPr5 – Structure in Solution and in the Crystal In an earlier investigation [3] pentaisopropyltridecaphosphane(5) ( 1 ) had been obtained by reacting i-PrPCl2, P4 and magnesium and subsequently thermolysing the crude reaction product, but had been structurally characterized only incompletely. We have now corroborated the earlier postulated constitution by NMR spectroscopic studies and an X-ray structural analysis. Thus 1 is 3,4,7,10,11-pentaisopropyl-pentacyclo[7.4.0.02,6.05,13.08,12]tridecaphosphane. In solution two configurational isomers 1 a and 1 b exist in the relative abundance of about 2 : 1, which have the symmetry C1 and Cs, respectively. When crystallizing pure 1 b precipitates, which at room temperature in solution is retransformed into the isomeric mixture 1 a , 1 b by inversion of the configuration. Any indications of an additional symmetric diastereomer have not been found. Obviously, in isomer 1 b the inversion barrier of the atom P7 is markedly higher than for the atoms of the two-atom bridges P3? P4 and P10? P11, respectively.  相似文献   

3.
Contributions to the Chemistry of Phosphorus. 163. About the Triorgano-nonaphosphanes(3) P9Et3 and P9(t-Bu)3; the First Detection of the Inversion of Configuration in a Polycyclophosphane Triethyl-nonaphosphane(3) ( 1 ) and tri-tert-butyl-nonaphosphane(3) ( 2 ) have been obtained by thermolysis and by dehalogenating a mixture of t-BuPCl2 and PCl3, respectively, and have been isolated in pure form. According to a complete analysis of their 31P{1H} NMR spectra 1 and 2 possess a P9 skeleton analogous to that of deltacyclane, thus being 5,8,9-triorgano-tetracyclo[4.3.0.0.2,4.03,7]nonaphosphanes. In each case the experimental spectrum can be simulated quite satisfactorily by the superposition of the spectra of two configurational isomers a and b , which differ in their relative arrangements of the substituents. When crystallizing 2 under proper conditions (?30°C) pure 2a precipitates, which on heating in solution is retransformed into the isomeric mixture 2a , 2b byinversion of the configuration. The dominating process therein is the change of configuration at P5; besides a quasi synchronous inversion occurs at P8, P9 and possibly also at P5, P8, P9, as is evident from the 2-D 31P NMR exchange spectrum. The same inversion processes also take place in 1 even though at a lower rate.  相似文献   

4.
Contributions to the Chemistry of Phosphorus. 219. Tetraisopropyloctadecaphosphane(4), P18i-Pr4 — Preparation and Structure Determination by Nuclear Magnetic Resonance Tetraisopropyloctadecaphosphane(4) ( 1 ) has been obtained by reaction of i-PrPCl2 with P4 and magnesium and subsequent thermolysis of the crude reaction product, and has been isolated in 95% purity. According to NMR-spectroscopic investigations, 1 contains a conjuncto-phosphane skeleton consisting of a P11(5)- and a P9(3)-structural element analogous to that of deltacyclane, joined through a common P2-bridge. Thus, 1 is 8,14,16, 18-tetraisopropyloctacyclo[13.2.1.02,13.03,11.04,9.05,7.06,10.012,17]octadecaphosphane. Compound 1 is formed as a mixture of two configurational isomers 1 a and 1 b , which differ from each other in their spatial arrangements of the isopropyl group at P8.  相似文献   

5.
Contributions to the Chemistry of Phosphorus. 223. Hexaisopropylicosaphosphane(6), P20i? Pr6 — Preparation and Structure Determination of Two Constitutional Isomers by Nuclear Magnetic Resonance Hexaisopropyl-icosaphosphane(6) has been obtained by reaction of i-PrPCl2 with P4 and magnesium and subsequent thermolysis of the crude reaction product. The compound is formed as a mixture of two constitutional isomers 1 and 2 of equal abundance, which have been almost purely isolated by HPLC as a mixture of the diastereomers 1 a , 1 b and in the form of the separate configurational isomers 2 a and 2 b , respectively. According to NMR-spectroscopic investigations, the new conjuncto-phosphane skeletons of 1 and 2 consist of a P13(5)- and a P9(5)-structural element analogous to that of brexane and of two P11(5)-partial skeletons, respectively, joined in each case through a common P2-bridge. Thus, 1 is 6,7,9,16,17,20-hexaisopropyloctacyclo[10.8.0.02,14.03,11.04,8.05,10.013,18.015,19]icosaphosphane and 2 is 7,9,15,17,19,20-hexaisopropyl-octacyclo[14.2.1.15,8.02,14.03,12.04,10.06,11.013,18]icosaphosphane. The phosphorus hydrogen compound P20H6 [22, 2c] should exhibit the same constitutional isomerism.  相似文献   

6.
Structural Chemistry of Phosphorus Containing Chains and Rings. 16. Molecular and Crystal Structure of the Triisopropylundecaphosphane P11(i-Pr)3 The compound 4,7,11-triisopropyl-pentacyclo[6.3.0.02.6.03.10.05.9]undecaphosphane, C9H21P11, crystallizes triclinically in the space group P1 with a = 1 045.3 pm, b = 1 057.2 pm, c = 1 075,0 pm, α = 101.00°, β = 98.89°, γ = 112.27° and Z = 2. The main structural feature is a phosphorus skeleton with approximate symmetry D3 composed of six five-membered rings which are asymmetrically substituted by the isopropyl groups. The (average) bond lengths are d(P? P) = 221.6 pm, d(P? C) = 187.5 pm, d(C? C) = 151.4 pm, d(C? H) = 108 pm with 217.6 ≤ d(P? P) ≤ 226.4 pm. The geometry of the substituents is quite normal.  相似文献   

7.
Contributions to the Chemistry of Phosphorus. 217. Hexaisopropyloctadecaphosphane(6), P18i-Pr6 – Preparation and Structure Determination by Nuclear Magnetic Resonance Hexaisopropyl-octadecaphosphane(6) ( 1 ) has been obtained by reaction of i-PrPCl2 with P4 and magnesium and subsequent thermolysis of the crude reaction product, and has been purely isolated as a yellow solid. According to NMR-spectroscopic investigations, 1 contains a new conjuncto-phosphate skeleton consisting of a P11(5)- and a P9(5)-structural element analogous to that of brexane, joined through a common P2-bridge. Thus, 1 is 5,7,8,14,16,18-hexaisopropyl-heptacyclo[13.2.1.02,13.03,11.04,9.06,10.012,17]octadecaphosphane. Compound 1 is formed as a mixture of two configurational isomers 1a and 1b , which probably differ from each other by inversion of the configuration at the (PR)2-bridge of the P9(5) partial structure analogous to that of brexane.  相似文献   

8.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

9.
Reactive E = C(pp)π-Systems. XLII [1]. Novel Coordination Compounds of 2-(Diisopropylamino)-1-phosphaethyne: [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}], [(Ph3P)2Pt{η2-(iPr2NCP)}], and [Co2(CO)622-(iPr2NCP)}] 2-(Diisopropylamino)-phosphaethyne iPr2N? C?P ( 2 ) reacts with the Ni(0)-complexes [Ni(1,5-cyclooctadiene)2] and [Ni(CO)3(1-azabicyclo[2.2.2]octane)], respectively, to give the novel complex [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}] ( 5 ), with the 1,3-diphosphacyclobutadiene derivative and 2 (side-on) as π-ligands. The molecular structure of 5 determined by X-ray diffraction on single crystals proves the spin systems and rotational barriers deduced from NMR-data (1H, 13C-, 31P). The PC distances of the four-membered ring of 1.817(2) and 1.818(2) Å – as expected – are considerably longer than the PC bond of the η2-coordinated phosphaalkyne 2 [1.671(2) Å]. – In the reactions of 2 with [(Ph3P)2Pt(C2H4)] or [Co2(CO)8] the ligand properties of 2 resemble those of alkynes affording the complexes [(Ph3P)2Pt{η2-(iPr2NCP)}] ( 7 ) with side-on coordinated 2 and [Co2(CO)622-(iPr2NCP)}] with 2 acting as a 4e donor bridge in quantitative yield. In attempts to prepare copper(I) complexes of the aminophosphaalkyne 2 by reaction with CuCl or CuI the only isolable product formed in reasonable amounts under the influence of air and moisture is the 1 λ3, 3 λ5-diphosphetene (iPr2N) ( 10 ) (isolated yield: ca. 20%). The crystal structure analysis of 10 indicates a strong structural relationship to the diamino-2-phosphaallyl cation [Me(iPr2N)]+ ( 12 ), the 1,3-diphosphacyclobutadiene ligand (iPr2NCP)2 in the binuclear complex [{η1, μ2-(iPr2NCP)2}Ni2(CO)6] ( 3a ) as well as to the heterocycles (dme)2LiOE2′ (E′ = S, 11a ; E′ = Se, 11b ) prepared by Becker et al. [11b, 35].  相似文献   

10.
Contributions to the Chemistry of Phosphorus. 212. Tetraisopropyldodecaphosphane(4), P12i-Pr4 – Preparation, Properties, and Molecular Dynamics According to an earlier crystal structure analysis, tetraisopropyldodecaphosphane(4) ( 1 ) exhibits the symmetry C2, and the substituents are arranged in all-trans position [3]. We have now found by NMR spectroscopic studies that in solution a second configurational isomer of the symmetry CS ( 1b ) exists in addition to the molecule present in the crystal ( 1a ). The transformation of 1a into 1b , which can only occur through a quasi synchronous inversion at the atoms P3 and P4 or P9 and P10, takes place at a noticeable rate already below room temperature.  相似文献   

11.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

12.
Crystal Structure of (Me4N)3[Ir(SCN)6], Vibrational Spectra and Normal Coordinate Analysis From a mixture of the linkage isomers [Ir(NCS)n(SCN)6–n]3–, n = 0–2, pure [Ir(SCN)6]3– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on a single crystal of (Me4N)3[Ir(SCN)6] (trigonal, space group R3, a = 14.838(2), c = 23.827(1) Å, Z = 6) reveals the presence of two crystallographically independent complex anions which C3i symmetry correlates with the cation/anion ratio 3 : 1. The thiocyanate ligands are exclusively S-coordinated with the average Ir–S distance of 2.384 Å and the Ir–S–C angle of 106.4°. The torsion angles S–Ir–S–C are 17.5 and 42.1°. The IR and Raman spectra of the (n-Bu4N) salt are assigned by normal coordinate analysis based on the molecular parameters of the X-ray determination. The valence force constant fd(IrS) is 1.57 mdyn/Å.  相似文献   

13.
Contributions to the Chemistry of Phosphorus. 230. Hexaisopropyltetradecaphosphane(6), P14i-Pr6, and Hexaisopropylhexadecaphosphane(6), P16i-Pr6 — Formation and Structural Determination by 31P-NMR Spectroscopy Hexaisopropyltetradecaphosphane(6) ( 1 ) and hexaiso-propylhexadecaphosphane(6) ( 2 ) are formed together with other isopropylpolycyclophosphanes by the reaction of i-PrPCl2 with P4 and magnesium and have been enriched to 30 mol% and 10 mol%, respectively. According to 31P-NMR spectroscopic investigations, the novel conjuncto-phosphane skeletons of 1 and 2 are the annelation products of a P5 ring with a P11(5) or a P13(5) partial skeleton, respectively, joined by a common P2 bridge. Thus, 1 is 4,5,6,10,12,14-hexaisopropylpentacyclo-[9.2.1.02,9 .03,7 .08,13]tetradecaphosphane and 2 is 5,6,7,11,14,15-hexaisopropylhexacyclo[7.7.0.02,13 .03,10 .04,8 .012,16]hexadecaphosphane. The phosphorus hydrides P14H16 and P16H6 have the same skeletal structures which are also intermediate stages in the formation of Hittorf's phosphorus.  相似文献   

14.
Two Ln26@CO3 (Ln=Dy and Tb) cluster‐based lanthanide–transition‐metal–organic frameworks (Ln MOFs) formulated as [Dy26Cu3(Nic)24(CH3COO)8(CO3)11(OH)26(H2O)14]Cl ? 3 H2O ( 1 ; HNic=nicotinic acid) and [Tb26NaAg3(Nic)27(CH3COO)6(CO3)11(OH)26Cl(H2O)15] ? 7.5 H2O ( 2 ) have been successfully synthesized by hydrothermal methods and characterized by IR, thermogravimetric analysis (TGA), elemental analysis, and single X‐ray diffraction. Compound 1 crystallizes in the monoclinic space group Cc with a=35.775(12) Å, b=33.346(11) Å, c=24.424(8) Å, β=93.993(5)°, V=29065(16) Å3, whereas 2 crystallizes in the triclinic space group P with a=20.4929(19) Å, b=24.671(2) Å, c=29.727(3) Å, α=81.9990(10)°, β=88.0830(10)°, γ=89.9940(10)°, V=14875(2) Å3. Structural analysis indicates the framework of 1 is a 3D perovskite‐like structure constructed out of CO3@Dy26 building units and Cu+ centers by means of nicotinic acid ligand bridging. In 2 , however, nanosized CO3@Tb26 units and [Ag3Cl]2+ centers are connected by Nic? bridges to give rise to a 2D structure. It is worth mentioning that this kind of 4d–4f cluster‐based MOF is quite rare as most of the reported analogous compounds are 3d–4f ones. Additionally, the solid‐state emission spectra of pure compound 2 at room temperature suggest an efficient energy transfer from the ligand Nic? to Tb3+ ions, which we called the “antenna effect”. Compound 2 shows a good two‐photon absorption (TPA) with a TPA coefficient of 0.06947 cm GM?1 (1 GM=10?50 cm4 s photon?1), which indicates that compound 2 might be a good choice for third‐order nonlinear optical materials.  相似文献   

15.
The reaction of AlCl3 with Li2PR (R = SiiPr3, SiMeiPr2) in a mixture of heptane and ether yields in the polycyclic compounds [(AlCl)43‐PR)2(μ‐PR)2(Et2O)2]( 1a : R = SiiPr3; 1b : SiMeiPr2) with a ladder‐shaped Al4P4 core. The coordination sphere of the outer aluminium atoms in these compounds is completed by ether ligands. In contrast, the reaction of AlCl3 with Li2PSiiPr3 in pure heptane yields in the formation of the hexagonal prismatic compound [(AlCl)63‐PSiiPr3)6]( 2 ). 1 and 2 were characterized by single crystal X‐ray diffraction analysis as well as by 31P{1H} and 27Al NMR spectroscopy. The structure determining effect of the solvent can be rationalized by quantumchemical calculations, which also show that the hexagonal prismatic structure is the most stable of the investigated oligomers in absence of ether.  相似文献   

16.
Reaction of a mixture of bicyclic phosphorus sulfide selenide iodides α‐P4SnSe3−nI2 (n = 0–3) with PriNH2 and Et3N gave corresponding diamides α‐P4SnSe3−n(NHPri)2 (n = 0–3) and imides α‐P4SnSe3−n(μ‐NPri) (n = 2–3), identified in solution by 31P NMR. In one isomer of α‐P4S2Se(μ‐NPri), the C2 symmetry of imides such as α‐P4S3(μ‐NPri) was broken, allowing relative assignment of 2J NMR couplings to the PNP bridge and the PSP bridge opposite to it. The coupling through the sulfur bridge was found to be reduced to ca. zero, in contrast to previous assumptions for this class of compounds. Ab initio models were calculated at the MPW1PW91/svp level for the sulfide selenide imides and for a selection of bond rotamers of the diamides, and at the MPW1PW91/LanL2DZ(d) level for the sulfide selenide diiodides. Different skeletal isomers were prevalent for the mixed chalcogenide diamides than for the diiodides, showing that exchange of chalcogen between skeletal positions took place in the amination reaction even at room temperature. Similar differences to those observed were predicted by the models, suggesting that equilibrium was attained.  相似文献   

17.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

18.
Investigations into Tin(IV) Alkoxides. II. Isolation and Characterization of the Compound Sn3O(OiBu)1010 · 2i-BuOH. The First Example of a Partially Hydrolized Tin(IV) Alkoxide The partial hydrolysis product Sn3O(OiBu)10 · 2i-BuOH was obtained by slow hydrolysis of the reaction product of tin tetrachloride with sodium isobutoxide. The compound forms colourless, moisture sensitive crystals, which easily release the coordinated solvent molecules in dry air. Its crystal and molecular structure has been determinated by single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P1 with a = 1363.5(7), b = 1462.7(10), c = 1637.7(7) pm, α = 95.40(5)°, β = 96.79(4)°, γ = 102.12(5)° and Z = 2. The crystal structure consists of discrete, trimeric molecules with octahedrally coordinated tin atoms which are connected to each other corresponding to the formulation Sn33-O)(μ2-OiBu)3(O1Bu)7 · (i-BuOH)2 by three isobutoxide groups bridging two metal atoms and a single threefold bridging oxygen atom  相似文献   

19.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

20.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号