首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chain Expansion of Functionalized Alkanones by Rearrangement Reactions In analogy to the transamidation reactions which were published earlier a method is described to prolong aliphatic C-chains by two or four C-atoms. 1,3-Diketones or 2-nitro alkanones which are monosubstituted at C(2) are condensed with e.g. methyl vinyl ketone. The reaction product is transformed to its chain-prolonged isomer in the presence of strong base via a 4- or 6-membered intermediate. The most effective reagent for the Michael reaction is methyl 3-oxo-4-pentenoate ( 20 ). In this case it was possible to convert 3-nitro-2-butanone ( 21 ) to methyl 2-acetyl-6-nitro-3-oxoheptanoate ( 26 ) in 82% yield.  相似文献   

2.
3.
4.
Das P(SiMe2)3P     
P(SiMe2)3P Li3P (produced from the elements) forms with Me2SiCl2 at 20°C in toluene the bicyclic compound P(SiMe2)3P 4 beside small amounts of ClMe2Si? P(SiMe2)2P? SiMe2Cl and traces of P4(SiMe2)6 7. 4 can be transformed into 7 by thermal treatment. With the formation of 4 the existence of a bicyclic silylphosphane is confirmed which has already been mentioned in connection with P(SiEt2)3P [1], but could not be proven until now.  相似文献   

5.
H ? C Bond Cleavage in Ferrocene by Organylruthenium Complexes Cp*(Me3P)2RuCH2CMe3 ( 1 ) reacts at 85°C with ferrocene ( 2 ) by cleavage of one H? C bond in 2 to give CpFe[η5-C5H4Ru(PMe3)2Cp*] ( 3 ) (Cp = η5-C5H5; Cp* = η5-C5Me5) and neopentane. The ruthenium atom in 3 has a distorted tetrahedral geometry, the planar Cp ligands in the ferrocenyl fragment are eclipsed. Solutions of 3 in [D6]benzene or [D8]THF exhibit H? D exchange of the ferrocenyl protons. In the [D8]THF molecule only the α-deuterium atoms are exchanged. Reaction pathways for this exchange are discussed.  相似文献   

6.
Reaction of NiCl2 with PhP(SiMe3)2, The Crystal Structure of [Ni12Cl2(PPh)2(P2Ph2)4(PHPh)8] [Ni12Cl2(PPh)2(P2Ph2)4(PHPh)8] ( 1 ) has been prepared by the reaction of NiCl2 with PhP(SiMe3)2. The structure has been characterized by X-ray crystal structure analysis. 1 contains a Ni12-cluster with m?4-PPh- and m?6-P2Ph2- as bridging ligands. The terminal PHPh- and Cl-ligands are bound to Ni-atoms. The Ni12-cluster can be described as an Ni8-cube, in which four edges are bridged by Ni-atoms.  相似文献   

7.
8.
Investigations on the Reactivity of [Me2AlP(SiMe3)2]2 with Base‐stabilized Organogalliumhalides and ‐hydrides [Me2AlP(SiMe3)2]2 ( 1 ) reacts with dmap?Ga(Cl)Me2, dmap?Ga(Me)Cl2, dmap?GaCl3 and dmap?Ga(H)Me2 with Al‐P bond cleavage and subsequent formation of heterocyclic [Me2GaP(SiMe3)2]2 ( 2 ) as well as dmap?AlMexCl3?x (x = 3 8 ; 2 3 ; 1 4 ; 0 5 ). The reaction between equimolar amounts of dmap?Al(Me2)P(SiMe3)2 and dmap?Ga(t‐Bu2)Cl yield dmap?Ga(t‐Bu2)P(SiMe3)2 ( 6 ) and dmap?AlMe2Cl ( 3 ). 2 – 8 were characterized by NMR spectroscopy, 2 and 6 also by single crystal X‐ray diffraction.  相似文献   

9.
10.
11.
Formation and Structure of the Cyclophosphanes P4(CMe3)2[P(CMe3)2]2 and P4(SiMe3)2[P(CMe3)2]2 n-Triphosphanes showing a SiMe3 and a Cl substituent at the atoms P1 and P2, like (Me3C)2P? P(SiMe3)? P(CMe3)Cl 3 or (Me3C)2P? P(Cl)? P(SiMe3)2 4 are stable only at temperatures below ?30°C. Above this temperature these compounds lose Me3SiCl, thus forming cyclotetraphosphanes, P4(CMe3)2[P(CMe3)2]2 1 out of 3 , P4(SiMe3)2[P(SiMe3)2]2 2a (cis) and 2b (trans) out of 4 . The formation of 1 proceeds via (Me3C)2P? P?PCMe3 5 as intermediate compound, which after addition to cyclopentadiene to give the Diels-Alder-adduct 6 (exo and endo isomers) was isolated. 6 generates 5 , which then forms the dimer compound 1 . Likewise (Me3C)2P? P?P-SiMe3 8 (as proven by the adduct 7 ) is formed out of 4 , leading to 2a (cis) and 2b (trans). Compound 1 is also formed out of the iso-tetraphosphane P[P(CMe3)2]2[P(CMe3)Cl] 9 , which loses P(CMe3)2Cl when warmed to a temperature of 20°C. 1 crystallizes monoclinically in the space group P21/a (no. 14); a = 1762.0(15) pm; b = 1687.2(18) pm; c = 1170.5(9) pm; β = 109.18(5)° and Z = 4 formula units in the elementary cell. The molecule possesses E conformation. The central four-membered ring is puckered (approx. symmetry 4 2m; dihedral angle 47.4°), thus bringing the substituents into a quasi equatorial position and the nonbonding electron pairs into a quasi axial position. The bond lengths in the four-membered ring of 1 (d (P? P) = 222.9 pm) are only slightly longer than the exocyclic bonds (221.8 pm). The endocyclic bond angles \documentclass{article}\pagestyle{empty}\begin{document}$ \bar \beta $\end{document}(P/P/P) are 85.0°, the torsion angles are ±33° and d (P? C) = 189.7 pm.  相似文献   

12.
13.
Formation of the Cyclotetraphosphanes cis- und trans-P4(SiMe3)2(CMe3)2 in the Reaction of (Me3C)PCl2 with LiP(SiMe3)2 · 2 THF The mechanism of the reaction of (Me3C)PCl2 1 with LiP(SiMe3)2 · 2 THF 2 was investigated. With a mole ration of 1:1 at ?60°C quantitatively (Me3C)(Cl)P? P(SiMe3)2 3 is formed. This compound eliminates Me3SiCl on warming to 20°C, yielding Me3Si? P?P? CMe3 4 (can be trapped using 2,3-dimethyl-1,3-butadiene in a 4+2 cycloaddition), which dimerizes to produce the cyclotetraphosphanes cis-P4(SiMe3)2(CMe3)2 5 and trans-P4(SiMe3)2(CMe3)2 6 . Also with a mole ratio of 1:2 initially 3 is formed which remarkably slower reacts on to give [(Me3Si)2P]P2P? CMe3 8 . Remaining LiP(SiMe3)2 cleaves one Si? P bond of 8 producing (Me3)2P? P(CMe3)? P(SiMe3)2Li. Via a condensation to the pentaphosphide 10 and an elimination of LiP(SiMe3)2 from this intermediate, eventually trans-P4(SiMe3)2(CMe3)2 6 is obtained as the exclusive cyclotetra-phosphane product.  相似文献   

14.
15.
16.
Reaction of the Two-component Systems P(OR)3 ? x(NR2)x (x = 0–3)/CCl4 and P4/CCl4 with HF-Donators The combination of organylammonium fluorides and carbon tetrachloride is a good agent for oxidative fluorination of trivalent phosphorus compounds. As oxidation products [(RO)PF5]? and (RO)2P(O)F are obtained from P(OR)3, (Et2N)2P(O)F and (Et2N)2(EtO)PF2 from P(OEt)(NEt2)2 as well as (Et2N)3PF2 and [(Et2N)3PF]+ from P(NEt2)3. In the system R2NH/CCl4/Et3N · n HF P4 is fast oxidized forming [HPF5]?, R2NH · PF5 and (R2N)2P(O)F. In the case of simultaneous addition of alcohols [(RO)PF5]?, (RO)3PO and (R2N)2P(O)F are formed. The reactions are controlled by the nucleophilic power and the concentration of fluoride, the acidity of the system, and the temperature.  相似文献   

17.
18.
Synthesis of Ketoses by Chain Elongation of 1-Deoxy-1-nitroaldoses. Nucleophilic Additions and Solvolysis of Nitro Ethers A method for the preparation of chain elongated uloses based upon the base-catalyzed addition of 1-deoxy-1-nitroaldoses to aldehydes and Michael acceptors and subsequent solvolytic replacement of the nitro group by a hydroxy group is described. Thus, addition of 1 , 3 and 9 to formaldehyde, followed by solvolysis gave the chain elongated ulose derivatives 2 , 8 and 10 (63–76%), respectively. The configuration at the anomeric center of the addition products was deduced from 13 C – NMR . spectra and mutarotation. In the case of 3 , the primary addition products 4 and 6 were isolated and acetylated to 5 and 7 . The nitro derivatives 4 – 7 do not follow Hudson's rule of isorotation. Addition of 1 to benzaldehyde (44%) and to nonanal (74%) preceded with a small degree of diastereoselectivity to give 15a / 15b , and 11 / 12 , respectively. The configuration of the secondary hydroxyl group of 12 was determined by correlation with methyl 2-hydroxydecanoate ( 14 ). Addition of 1 to the galacroaldehyde 16 gave a single compound 17 (78%). The structure of this dodecosulose was determined by X-ray crystallography. Solvolysis of the acetylation product 18 in formamide gave the hemiacetal 19 (69%). Michael addition of 1 to acrylonitrile, methyl vinyl ketone and cyclohexenone under solvolytic conditions gave the hemiacetals 27 , 30 and 31a , b (49%, 71% and 76%, respectively). Under non-solvolytic conditions (Bu4NF), 1 reacted with acrylonitrile, and crotononitrile to give the anomeric nitro ethers 23 and 24 (67%) and 25 and 26 (84%). respectively. Similarly. 3 added to acrylonitrile to give 28 and 29 (55%, 4:1). This reaction appears to proceed under kinetic control. Addition of 1 to ethyl propiolate and solvolysis yielded the unsaturated spirolactone 32 (50%) and the hemiacetal 33 (17%). Hydrogenation of 32 gave the saturated spirolactone 34 (100%) which was also obtained from 1 and methyl acrylate (63%). Addition of 1 to dimethylmaleate gave the unsaturated ester 35 (48%).  相似文献   

19.
LiE(SiMe3)2 (E = P, As) as Building Unit of Molybdenum Complexes with EH Ligands The complex [{CpMo(CO)2}2(μ‐H)(μ‐PH2)] ( 1 ) can be obtained in a one‐pot reaction using [CpMo(CO)2]2, LiP(SiMe3)2, MeOH and HBF4. Experiments to synthesize [{CpMo(CO)2}2(μ‐H)(μ‐AsH2)] in an analogous reaction sequence using [CpMo(CO)2]2 and LiAs(SiMe3)2 failed. However, the products ‐[{CpMo(CO)2}2(μ, η2‐As2)] and [{CpMo(CO)2}2(μ‐H)(μ4‐As){CpMo(CO)2}24, η1:η1‐As2H){CpMo(CO)2}2(μ‐H)] ( 3 ) could be obtained via this reaction. The deprotonated derivative of 1 , K[{CpMo(CO)2}2(μ‐PH2)] ( 2 ), which can be obtained by reaction of 1 with KH, doesn't react with GaCl3 under KCl elimination as expected. Instead, the Lewis acid/base adduct K[{CpMo(CO)2}2(μ‐PH2)(GaCl3)] ( 4 ) is formed, which adopts a polymeric chain structure in the solid state. The structural and the spectroscopic data of the products are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号