首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorothionitrene Complexes of Tungsten. Crystal Structure of [WCl4(NSCl)]2 Tungsten hexachloride reacts with trithiazyl chloride, (NSCl)3, yielding the chlorothionitrene complex [WCl4(NSCl)]2, from which AsPh4[WCl5(NSCl)] can be obtained by reaction with AsPh4Cl. Both complexes are characterized by their i.r. spectra. The crystal structure of [WCl4(NSCl)]2 was determined and refined with X-ray diffraction data (1059 reflexes, R = 0.055). It crystallizes in the monoclinic space group P21/n with the lattice constants a = 1523, b = 904, c = 583 pm and β = 91.35°. In the unit cell there are two centrosymmetric [WCl4(NSCl)]2 molecules in which the W atoms are linked via two chloro bridges; short and long W? Cl distances (244 and 265 pm) alternate in the W2Cl2 ring, the NSCl groups are found in the trans positions to the longer W? Cl bonds. The WNS bond angle (175°) and short bond distances correspond to a formulation .  相似文献   

2.
The Crystal Structure of [TeCl3(15-crown-5)]SbCl6 The title compound is synthesized by the reaction of tellur tetrachloride, 15-crown-5 and antimony pentachloride in acetonitrile solution, forming colourless crystals, which were characterized by IR spectroscopy and an X-ray structure determination. Space group Pnma, Z = 4, 1966 observed unique reflections, R = 0.072, Rw = 0.052. The compound forms ions [TeCl3(15-crown-5)]+ and SbCl6?; in the cation the tellurium atom is eightfold coordinated by the three chlorine atoms and the five oxygen atoms of the crownether molecule (Te? O bond lengths 266 and 279 pm).  相似文献   

3.
PPh3Me[MoBr5(CH3CN)]. I.R. Spectrum, Magnetic Behaviour, and Crystal Structure Molybdenum tetrabromide and acetonitrile form MoBr4(CH3CN)2, from which PPh3Me[MoBr5(CH3CN)] is obtained by reaction with PPh3MeBr in dibromo methane. Both compounds are characterized by their IR spectra. By evaluation of the magnetic susceptibility of PPh3Me[MoBr5(CH3CN)] in the temperature range of 4.2 to 290 K the Curie-Weiss parameters μcw = 2.65 B.M. and Θ = ?44 K were obtained. The crystal structure of PPh3Me[MoBr5(CH3CN)] was determined by X-ray diffraction (2426 observed reflexions, R = 0.082). Crystal data: a = 1064.9, b = 2172.1, c = 1330.4 pm, β = 119.92º, space group P21/c, Z = 4. In the crystal, PPh3Me+ and [MoBr5(CH3CN)]? ions are packed in alternate cation and anion layers perpendicular to a. In the anion the Mo atom has a distorted octahedral coordination. The bond length of the bromine atom in trans position to the N atom is considerably shorter than the other MoBr distances.  相似文献   

4.
Crystal Structure of K[F5W(≡NCl)] Orange single crystals of K[F5W(≡NCl)] have been formed as a by‐product from the reaction of tungsten nitrido chloride, WNCl3, with Me3SnF in the presence of potassium fluoride in toluene suspension. K[F5W(≡NCl)] crystallizes in the monoclinic space group P21/c with four formula units per unit cell. Lattice dimensions at –83 °C: a = 1145.9(3), b = 770.4(2), c = 772.5(2) pm, β = 99.91(1)°, R1 = 0.0742. The compound forms an ionic structure with octahedral [F5W(≡NCl)] ions with a nearly linear arrangement of the N‐chloroimido ligand group W≡N–Cl (bond angle 173°, WN distance 174 pm). The K+ ions link the anions via K…F contacts and coordination number eight to form double layers along [100]. The layers itself are associated by short bounding Cl…F contacts of 279 pm.  相似文献   

5.
6.
Reaction of Rhenium Trichloride Dinitrosyl with Triphenyl Phosphane. Crystal Structure of [ReCl3(NO) (NPPh3) (OPPh3)] Triphenyl phosphane reacts with ReCl3(NO)2 in dichloro methane solution forming the phosphaneiminato complex [ReCl3(NO)(NPPh3)(OPPh3)], which is characterized by it's i.r. spectrum and by 31P nuclear magnetic resonance. The crystal structure was determined by the aid of X-ray diffraction data (3 133 independent reflexions, R = 3.9%). The complex crystallizes monoclinic in the space group P21/n with four formula units per unit cell. The lattice dimensions are a = 1114, b = 1825, c = 1931 pm, β 96.6°. In the complex the rhenium atom has the coordination number six, the ligands being three chlorine atoms, the linear bonded Nitrosyl group, the O atom of the triphenyl phosphane oxide, which is coordinated trans to the NO ligand, and the N atom of the phosphaneiminato group. The ReN and PN bond lengths of the (NPPh3)? ligand (186 and 163 pm, resp.) indicate double bond character; in contrast to other phosphaneiminato complexes of transition metals with linear array M?N?P, in [ReCl3(NO)(NPPh3)(OPPh3)] the Re? N? P bond angle is only 139°.  相似文献   

7.
Dichloro Acetylene as Complex Ligand. Crystal Structure of PPh4[WCl5(C2Cl2)] · 0.5 CCl4 Tungsten hexachloride and dichloro acetylenediethyletherate react in boiling CCl4 in presence of C2Cl4 as reducing agent forming [Et2O · WCl4(C2Cl2)]. In vacuo the complex looses ether giving the dichloro acetylene complex [WCl4(C2Cl2)]2 which is dimeric with chloro bridges. Both complexes react with tetraphenylphosphonium chloride to form PPh4[WCl5(C2Cl2)] which is equally prepared by ligand exchange of PPh4[WCl5(C2I2)] with silver chloride. All dichloro acetylene complexes are red to brown crystalline solids sensitive to moisture, and are thermally and mechanically very stable compared with the highly explosive dichloro acetylene. The compounds are characterized by their i.r. spectra; [Et2O · WCl4(C2Cl2)] was additionally investigated by 13C-nmr spectroscopy. PPh4[WCl5(C2Cl2)] · 0.5 CCl4 formes dark brown crystals; according to the structural investigation by X-ray diffraction methods the compound crystallizes orthorhombic in the space group Pbca with 8 formula units per unit cell (1317 observed, independent reflexions, R = 0.049). The cell dimensions are a = 1702 pm, b = 1675 pm and c = 2228 pm. The compound consists of [WCl5(C2Cl2)]? anions and PPh4⊕ cations including CCl4 molecules without bonding interactions. The tungsten atoms are seven-coordinated by five chlorine atoms and two carbon atoms. The dichloro acetylene ligand is bonded symmetrically side-on and has a C? C bond length of 128 pm. The W? C distances are 201 pm, the four equatorial Cl atoms have W? Cl bond lengths of 234 pm whereas the chlorine atom in trans-position to the W? C2 group is situated in a distance of 244 pm.  相似文献   

8.
Crystal Structure of [BeCl2(15‐Crown‐5)] Single crystals of [BeCl2(15‐crown‐5)] ( 1 ) were obtained from dichloromethane solutions of BeCl2 in the presence of the equivalent amount of 15‐crown‐5 and characterized by IR spectroscopy and X‐ray diffraction. Space group P21/c, Z = 4, lattice dimensions at 100 K: a = 1036.2(1), b = 1071.1(1), c = 1360.1(1) pm, β = 109.86(1)°, R1 = 0.0225. The structure determination shows no disorder, all hydrogen positions were refined isotropically. The results are in contrast to the previously reported crystal structure determination in the space group P21nb. The beryllium atom of 1 forms a BeO2C2 five‐membered heterocycle with terminal chlorine atoms to give a distorted tetrahedral coordination with distances Be–O 166.5(2), 169.9(2) pm, and Be–Cl 195.8(2), 197.8(2) pm. The structural results are in good agreement with DFT calculations on B3LYP/6‐311+G** level.  相似文献   

9.
Diiodoacetylene Complexes of Tungsten(IV). Crystal Structure of PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 Tungsten hexachloride and diiodoacetylene react in CCl4 solution forming [WCl4(I? C?C? I)]2 which has a dimer structure with chloro bridges. In CH2Cl2, it reacts with PPh4Cl yielding PPh4[WCl5(I? C?C? I)] · 0.5 CH2Cl2. In both compounds the C2I2 ligands attain a marked increase in thermal stability by their side-one coordination to the tungsten atoms. The crystal structure of the PPh4 salt was determined with X-ray diffraction data (3879 observed reflexions, R = 0.050). PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 crystallizes in the space group P21/n with 8 formula units per unit cell. The lattice constants are a = 1723.0, b = 1681.2, c = 2214.6 pm and β = 94.38°. There are two crystallographically independent [WCl5(C2I2)]? ions which differ only slightly from one another. The C2I2 ligand has a staggered arrangement relative to the W? Cl groups, with C? C bond lengths of 127 pm. The infrared spectra are discussed.  相似文献   

10.
Zusammenfassung Ti5As3 wird aus den Komponenten hergestellt und durch Pulveraufnahmen als mit Mn5Si3 isotyp erkannt; die Gitterparameter sind:a=7,400;c=5,215 Å. Zusätze an Cu sowie Nichtmetallen (B, C. N, O) ergeben keinen Hinweis auf Stabilisierung von Ti5As3 durch eine dritte Komponente. Ti5As3 wird mit analogen Nachbarphasen verglichen.
The phase Ti5As3 has been prepared out of the components and examined by X-ray powder diagrams. The crystal structure was found to be isotypic with Mn5Si3, the lattice parameters being determined (a=7,400,c=5,215 Å). There is no hint for a stabilizing effect by either Cu or non-metals such as B, C, N, O. Comparison is made between Ti5As3 and the analogous neighbouring phases.
  相似文献   

11.
Synthesis, I.R. Spectrum, and Crystal Structure of PPh4[OsCl4(NO)(NSCl)] Molten trithiazyl chloride reacts with OsCl3(NO) to yield a product mixture consisting mainly of S4N3[OsCl4(NO)(NSCl)] and S4N3Cl. Extraction of this mixture with a solution of tetraphenylphosphonium chloride in dichloromethane affords green (PPh4)2[OsCl5(NO)] · 2 CH2Cl2 and the red title compound. PPh4[OsCl4(NO)(NSCl)] was characterized by its IR spectrum and an X-ray crystal structure analysis (3001 independent observed reflexions, R = 0.048). Crystal data: monoclinic, space group P21/c, Z = 4, a = 1716, b = 1054, c = 1588 pm, β = 96.25°. The compound consists of PPh4⊕ cations and [OsCl4(NO)(NSCl)]? anions in which the nitrosyl and the chlorothionitrene ligands have a cis arrangement. Due to positional disorder the NO and NSCl groups are superimposed statistically in the structure model.  相似文献   

12.
The Crystal Structure of K3IO5 The crystal structure of K3IO5, tetragonal, space group P4/ncc–D, was determined by X-ray and neutron powder diffraction. It is closely related to that of (NH4)3FeF6, with a tetragonally deformed unit cell, the c lattice constant being twice as large as that of the fluorine compound, and with tetragonal IO5 pyramids replacing the octahedral FeF6 complexes.  相似文献   

13.
14.
Mono- and Binuclear Dinitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of (PPh3Me)2[WCl4(NO)2], (PPh3Me)2[MoCl3(NO)2]2, and (PPh3Me)2[WCl3(NO)2]2 The complexes (PPh3Me)2[MCl4(NO)2] (M = Mo, W), and (PPh3Me)2[MCl3(NO)2]2, respectively, are prepared by reactions of the polymeric compounds MCl2(NO)2 with triphenylmethylphosphonium chloride in CH2Cl2, forming green crystals. According to the IR spectra the nitrosyl groups are in cis-position in all cases. The tungsten compounds as well as (PPh3Me)2[MoCl3(NO)2]2 were characterized by structure determinations with X-ray methods. (PPh3Me)2[WCl4(NO)2]: space group C2/c, Z = 4. a = 1874, b = 1046, c = 2263 pm, β = 119.99°. Structure determination with 3492 independent reflexions, R = 0.057. The compound consists of PPh3Me ions, and anions [WCl4(NO)2]2? with the nitrosyl groups in cis-position (symmetry C2v). (PPh3Me)2[WCl3(NO)2]2: Space group C2/c, Z = 4. Structure determination with 2947 independent reflexions, R = 0.059. (PPH3Me)2[MoCl3(NO)2]2: Space group P1 , Z = 1. a = 989, b = 1134, c = 1186 pm; α = 63.25°, β = 80.69°, γ = 69.94°. Structure determination with 3326 independent reflexions, R = 0.046. The compounds consist of PPh3Me ions, and centrosymmetric anions [MCl3(NO)2]22?, in which the metal atoms are associated via MCl2M bridges of slightly different lengths. One of the NO groups is in an axial position, the other one in equatorial position (symmetry C2h).  相似文献   

15.
Azidocuprates(II). Crystal Structure of (PPh4)2[Cu2(N3)6] (PPh4)2[Cu(N3)4] and (PPh4)2[Cu2(N3)6], which is already known, are prepared from the corresponding chloro cuprates and excess silver azide in dichloro methane suspension. The azido cuprates form nonexplosive brown crystals of low sensitivity to moisture and are characterized by i.r. spectroscopy. (PPh4)2[Cu2(N3)6] was submitted to a X-ray crystallographic structural analysis (4284 observed, independent reflexions, R = 0.034). The compound crystallizes triclinic in the space group P1 with one formula unit per unit cell. The lattice parameters are a = 1047.4 pm; b = 1131.1 pm; c = 1179.4 pm; α = 101.26°; β = 109.31°; γ = 103.42°. The compound consists of PPh4 cations and centrosymmetric anions [Cu2(N3)6]2?, which meet D2h-symmetry fairly well. In the anions the copper atoms are linked to a planar Cu2N2 four-membered ring by the N α atoms of two azide groups. The other azido ligands are bonded terminally and complete coordination number 4 at the Cu atoms which show planar geometry.  相似文献   

16.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of K2[IrCl5(NH3)] The X-ray structure determination of K2[IrCl5(NH3)] (orthorhombic, space group Pnma, a = 13.426(4), b = 10.015(2), c = 6.8717(7) Å, Z = 4) revealed the Cs point symmetry of the complex anion [IrCl5(NH3)]2? (Ir? Cl = 2.337–2.365, Ir? N = 2.067(10); N? H = 0.73–0.79 Å). Using the molecular parameters the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(NH) = 5.88, fd(IrN) = 2.66, fd(IrCl) = 1.68 mdyn/Å.  相似文献   

17.
Hydrogen Diazide – Synthesis and Crystal Structure of PPh4[N3HN3] PPh4[N3HN3] has been prepared from PPh4N3 and Me3SiN3 by the reaction with water or ethanol forming colourless nonexplosive crystal needles, which were characterized by IR spectroscopy and by a crystal structure determination. Space group C2/c, Z = 12, lattice dimensions at –70 °C: a = 3782.4(3), b = 727.8(2), c = 2512.4(2) pm, β = 110.13(1)°, R = 0.0841. The [N3HN3] ion is characterized by an asymmetric N–H…N hydrogen bridge with a NN distance of 272(1) pm.  相似文献   

18.
Contributions to the Chemistry of N-substituted Metal Amides. XVIII. Reaction of (Ph2N)2Co? Co(NPh2)2 with Alkali Metals and Alkali Metal Amides — a Method for the Preparation of Cobalt (II) Complexes of the Coordination Number 3 Alkali metals (M) react with [Co(NPh2)2]2 ( I ) in inert solvents to give compounds of the type MI[Co(NPh2)3]. In these compounds cobalt have been shown to have the coordination number of 3. The cleavage of the Co? Co-bond of I with alkali metal amides yields complexes of the composition MI[Co(NPh2)3], M[Co(NPh2)4] and MI[Co(NPh2)2NPhR]. The results of magnetic and spectroscopical investigations of the new compounds are communicated.  相似文献   

19.
Summary The crystal structure of pentacesium octaazidoeuropiate(III), Cs5Eu(N3)8, was determined by single crystal X-ray diffraction: orthorhombic,a=16.811(4),b=16.860(5),c=16.964(3)Å, space group Pbca,Z=8, 2 310 observed reflections,R=0.048. Europium atoms are coordinated to eight azide groups, the coordination polyhedra have no azide groups in common. Four cesium atoms are surrounded by eight, one by seven azide groups. The azide groups are symmetric with mean N-N-distances of 1.17(1)Å.
  相似文献   

20.
Thionitrosyl Complexes of Ruthenium. Crystal Structure of (PPh4)2[{RuBr4(NS)}2 (μ-N2S2)] Ruthenium trichloride reacts with trithiazyl chloride, yielding cis-RuCl4 (NS)2. With triphenylmethylphosphonium chloride this forms the complex [RuCl4(NS)2Cl]? in which a chloride ion is bonded between the sulfur atoms in a chelate manner. With tetraphenylphosphonium bromide, RuCl4(NS)2 undergoes a redox reaction that affords (PPh4)2[{RuCl4(NS)}2(μ-N2S2)] which can be transformed to the title compound by the action of trimethylsilyl bromide. The i.r. spectra are reported. The crystal structure of (PPh4)2[{RuBr4(NS)}2(μ-N2S2)] · 4 CH2X2 (X ? Cl, Br) was determined with X-ray diffraction data (1534 observed reflexions, R = 0.085). Crystal data: monoclinic, space group P21/n, Z = 2, a = 1680.7, b = 1287.0, c = 1706.1 pm and β = 99.97°. The compound consists of tetraphenylphosphonium cations, CH2Br2 and CH2Cl2 molecules (statistically) and centrosymmetric anions [{RuBr4(NS)}2(μ-N2S2)]2? in which the ruthenium atoms are linked via the nitrogen atoms of a planar N2S2 ring. In the corresponding trans-positions every Ru atom has a thionitrosyl ligand with a nearly arrangement Ru?N?S with RuN and NS bond lengths of 169 und 151 pm, respectively. Four bromine atoms complete the distorted octahedral coordination of each ruthenium atom. The bromine atoms that are coplanar with the N2S2 ring form rather short Br…?S contacts with a mean distance of 317 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号