首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from readily available ethyl-4-nitropyrrole-2-carboxylate ( 1 ), substituted 1-methyl-2-(1,3,4-thiadiazol-2-yl)-4-nitropyrroles and 1-methyl-2-(1,3,4-oxadiazol-2-yl)-4-nitropyrroles were prepared. The reaction of 1 with diazomethane gave ethyl 1-methyl-4-nitropyrrole-2-carboxylate ( 2 ). Reaction of compound 2 with hydrazine hydrate afforded the corresponding hydrazide 3 . The reaction of 3 with formic acid yielded 1-(1-methyl-4-nitropyrrole-2-carboxyl)-2-(formyl)hydrazine ( 7 ). Refluxing of the latter with phosphorus pentasulfide in xylene yielded compound 6 in 40% yield. Reaction of compound 7 with phosphorus pentoxide afforded compound 9 . Reaction of compound 3 with 1,1′-carboxyldiimidazole in the presence of triethylamine yielded 2-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-oxadiazoline-4(H)-5-one ( 11 ). Refluxing compound 3 with cyanogen bromide in methanol gave compound 12 . Compound 13 could be obtained through the reaction of compound 3 with carbon disulfide in basic medium. Alkylation of compound 13 afforded the correspanding alkylthio derivative 14 . Reaction of 1-methyl-4-nitropyrrole-2-carboxylic acid ( 15 ) with thiosemicarbazide and phosphorus oxychloride gave 2-amino-5-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazole ( 16 ). Sandmeyer reaction of compound 16 yielded 2-chloro-5-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazole ( 17 ). Refluxing of the latter with thiourea afforded 2-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazoline-4(H)-5-thione ( 18 ). Alkylation of compound 18 gave the corresponding alkylthio derivative 19 . Oxidation of the latter with hydrogen peroxide in acetic acid yielded 2-(1-methyl-4-nitro-2-pyrrolyl)-5-methylsulfonyl-1,3,4-thiadiazole ( 20 ).  相似文献   

2.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

3.
Reaction of 2,4-dichlorothienopyrimidines and -quinazolines 1 with sodium borohydride gave the corresponding 2-chloro-3,4-dihydro derivatives 2. Some nucleophilic substitutions of 2b afforded 2-substituted derivatives 3b-7b and reaction of 2g,h with ethyl bromoacetate yielded selectively the corresponding 3-substituted compounds 8g,h which were derived to imidazo[2,1-b]quinazolin-2-ones 9g,h .  相似文献   

4.
This paper describes the synthesis and chemical properties of some 2- and 3-substituted furo[2,3-b]pyridines. Reaction of ethyl 2-chloronicotinate 1 with sodium ethoxycarbonylmethoxide or 1-ethoxycarbonyl-1-ethoxide gave β-keto ester 2 or ketone 5 , respectively. Ketonic hydrolysis of 2 afforded ketone 3, from which furo[2,3-b]pyridine 4 was obtained by the method of Sliwa. While, 2-methyl derivative 7 was prepared from 5 by reduction, O-acetylation and the subsequent pyrolysis. Reaction of ketone 3 with methyllithium gave tertiary alcohol 8 which was O-acetylated and pyrolyzed to give 3-methyl derivative 9 . Formylation of 4 , via lithio intermediate, with DMF yielded 2-formyl derivative 10 , from which 7 , was obtained by Wolff-Kishner reduction. Dehydration of the oxime 11 of 10 gave 2-cyano derivative 12 , which was hydrolyzed to give 2-carboxylic acid 13 . Reaction of 3-bromo compound 14 with copper(I) cyanide gave 3-cyano derivative 15 . Alkaline hydrolysis of 15 afforded compound 16 and 17 , while acidic hydrolysis gave carboxamide 18 . Reduction of 15 with DIBAL-H afforded 3-formyl derivative 19 . Wolff-Kishner reduction of 19 gave no reduction product 9 but hydrazone 20 . Reduction of tosylhydrazone 21 with sodium borohydride in methanol afforded 3-methoxymethylfuro[2,3-b]pyridine 22 .  相似文献   

5.
Treatment of 6,7‐diethoxy‐3,4‐dihydroisoquinoline ( 8 ) and its 1‐methyl derivative 12 with hydrazonoyl halides 10 in the presence of Et3N in THF under reflux afforded the corresponding 5,6‐dihydro‐1,2,4‐triazolo[3,4‐a]isoquinolines 11 and 13 , respectively, in high yield (Schemes 2 and 3). The products are formed via regioselective 1,3‐dipolar cycloaddition of the intermediate nitrilimines 9 with the isoquinoline C=N bond. Reaction of 6,7‐diethoxy‐3,4‐dihydroisoquinoline‐1‐acetonitrile ( 4a ) with ethyl α‐cyanocinnamates 15 in the presence of piperidine in refluxing MeCN yielded benzo[a]quinolizin‐4‐ones 16 (Scheme 4). Under the same conditions, 12 and arylidene malononitriles 19 reacted to give benzo[a]quinolizin‐4‐imines 20 (Scheme 5). Instead of 15 and 19 , mixtures of an aromatic aldehyde, and ethyl cyanoacetate or malononitrile, respectively, can be used in a one‐pot reaction.  相似文献   

6.
Several chemical reactions were carried out on 3‐(benzothiazol‐2‐yl‐hydrazono)‐1,3‐dihydro‐indol‐2‐one ( 2 ). 3‐(Benzothiazol‐2‐yl‐hydrazono)‐1‐alkyl‐1,3‐dihydro‐indol‐2‐one 3a , 3b , 3c have been achieved. Reaction of compound 2 with ethyl bromoacetate in the presence of K2CO3 resulted the uncyclized product 4 . Reaction of compound 2 with benzoyl chloride afforded dibenzoyl derivative 5 . Compound 2 was smoothly acetylated by acetic anhydride in pyridine to give diacetyl derivative 6b . Moreover, when compound 4 reacted with methyl hydrazine, it yielded dihydrazide derivative 7 , whereas the hydrazinolysis of this compound with hydrazine hydrate gave the monohydrazide derivative 8 . {N‐(Benzothiazol‐2‐yl‐N′‐(3‐oxo‐3,4‐dihydro‐2H‐1,2,4‐triaza‐fluoren‐9‐ylidene)hydrazino]‐acetic acid ethyl ester ( 9 ) was prepared by ring closure of compound 8 by the action of glacial acetic acid. In addition, the reaction of 2‐hydrazinobenzothiazole ( 1 ) with d ‐glucose and d ‐arabinose in the presence of acetic acid yielded the hydrazones 10a , 10b , respectively. Acetylation of compound 10b gave compound 11b . On the other hand, compound 13 was obtained by the reaction of compound 1 with gama‐d ‐galactolactone ( 12 ). Acetylation of compound 13 with acetic anhydride in pyridin gave the corresponding N1‐acetyl‐N2‐(benzothiazolyl)‐2‐yl)‐2,3,4,5,6‐penta‐O‐acetyl‐d ‐galacto‐hydrazide ( 14 ). Better yields and shorter reaction times were achieved using ultrasound irradiation. The structural investigation of the new compounds is based on chemical and spectroscopic evidence. Some selected derivatives were studied for their antimicrobial and antiviral activities.  相似文献   

7.
The reaction of o-phenylenediamine with α-methylsulfinylcyclohexanone and α-methylsulfinylcyclopentanone in the presence of acetic acid afforded 1,2,3,4-tetrahydrophenazine and 2,3-dihydro-1H-cyclopenta[b]-quinoxaline, respectively. 3,4-Diaminotoluene and 3,4-diaminochlorobenzene were reacted with α-methyl-sulfinylacetophenone to give a mixture of the corresponding 6- and 7-substituted 2-phenylquinoxaline. Condensation of 3,4-diaminomethoxybenzene with α-methylsulfinylacetophenone gave 7-methoxy-2-phenylacetophenone, whereas, the same reaction between 3,4-diaminonitrobenzene and α-methylsulfinylacetophenone yielded 6-nitro-2-phenylquinoxaline.  相似文献   

8.
Reaction of 6‐amino‐2‐thiouracil 1 with ethyl bromoacetate yielded ethyl 2‐(7‐amino‐2,5‐dioxo‐3,5‐dihydro‐2H‐thiazolo[3,2‐a]pyrimidin‐6‐yl)acetate 2 . Reaction of 2 with sodium ethoxide afforded the pyrrolothiazolopyrimidine derivative 3 . Compound 2 reacted with hydrazine hydrate to give 7‐amino‐thiazolopyrimidine‐carbohydrazide 4 . The latter compound 4 reacted with carbon disulphide to form 7‐amino‐6‐(oxadiazolylmethyl) thiazolopyrimidine 5 . Compound 5 was heated in methanol to yield 9‐thioxotriazolopyrrolothiazolopyrimidine 6 . Also, the reaction of 3 with aromatic aldehydes afforded the diarylmethylenepyrrolothiazolopyrimidine derivatives 7a‐c . The latter compounds 7a‐c underwent cyclocondensation with hydroxylamine to give diaryldioxazolopyrrolothiazolopyrimidine derivatives 8a‐c . The new prepared compounds were subjected for antioxidant and antituomer studies, some of these compounds exhibited promising activity.  相似文献   

9.
Abstract

Isopropyl 6‐O‐acetyl‐3‐deoxy‐4‐S‐ethyl‐4‐thio‐α‐Dthreo‐hexopyranosid‐2‐ulose (3) was converted to the corresponding 3‐[bis(methylthio)methylene] derivative 4 with a push–pull activated C–C double bond. Treatment of 4 with hydrazine and methylhydrazine afforded the pyrano[3,4‐c]pyrazol‐5‐ylmethyl acetates 5a and 5b, respectively. Desulfurization of compound 4 with sodium boron hydride yielded the 3‐[(methylthio)methylene]hexopyranosid‐2‐ulose 7. Compound 7 was reacted with amines to furnish 3‐aminomethylene‐hexopyranosid‐2‐uloses 8, 9. Reaction of 7 with hydrazine hydrate, hydrazines, hydroxylamine, and benzamidine afforded the pyrazolo, isoxazalo, and pyrimido anellated pyranosides (1013).  相似文献   

10.
Treatment of 1,3-dimethyl-6-hydrazinouracil with the appropriate dimethylformamide dialkylacetal afforded the, corresponding 2-alkyl-5,7-dimethylpyrazolo[3,4-d]pyrimidine-4,6-(5H,7H)diones. The reaction of 1,3-dimethyl-6-(α-methylbenzylidenehydrazino)uracils with dimethylformamide dimethylacetal or triethyl orthoformate gave the corresponding 5,7-dimethyl-2-vinylpyrazolo[3,4-d]pyrimidine-4,6(5H,7H)diones, respectively. Similarly, treatment of 1,3-dimethyl-6-(α-methylbenzylidenehydrazino)uraeils with triethyl orthopropionate yielded the corresponding 5,7-dimethyl-3-ethyl-2-vinylpyrazolo[3,4-d]pyrimidine-4,6(5H,7H)diones.  相似文献   

11.
The regiospecific reaction of 3-benzyloxycarbonylaminomethylcarbonylamino-4-benzoylpyridine (6a) , or 3-t-butoxycarbonylaminomethylcarbonylamino-4-benzoylpyridine (6b) , with either acetyl chloride or ethyl chloroformate, and either n-butylmagnesium chloride or phenylmagnesium bromide afforded the respective 1-acetyl (or ethoxycarbonyl)-2-n-butyl (or phenyl)-3-benzyloxy (or t-butoxy) carbonylaminomethylcarbonylami-no-4-benzoyl-1,2-dihydropyridines 7 in 60-75% yield. Reaction of 1-acetyl (or ethoxycarbonyl)-2-n-butyl (or phenyl)-3-t-butoxycarbonylaminomethylcarbonyl-4-benzoyl-1,2-dihydropyridines 7b, 7f, 7d, 7h with trifluoroacetic acid gave the corresponding 5-phenyl-8-acetyl (or ethoxycarbonyl)-9-n-butyl (or phenyl)-1,3,8,9-tetrahydro-2H-pyrido[3,4-e]-1,4-diazepin-2-ones 8a, 8b, 8c, 8d respectively in 45–63% yield. N1-Methylation of 5-phenyl-8-acetyl-9-n-butyl (or phenyl)-1,3,8,9-tetrahydro-2H-pyrido[3,4-e]-1,4-diazepin-2-ones 8a, 8b using sodium hydride and iodomethane yielded the corresponding N1-methyl derivatives 9a (48%) and 9b (54%). Oxidation of 5,9-diphenyl-8-ethoxycarbonyl-1,3,8,9-tetrahydro-2H-pyrido[3,4-e]-1,4-diazepin-2-one (8d) using p-chloranil afforded 1,3-dihydro-5,9-diphenyl-2H-pyrido[3,4-e]-1,4-diazepin-2-one (10) . 5-Phenyl-8-acetyl-9-n-butyl-1,3,8,9-tetrahydro-2H-pyrido[3,4-e]-1,4-diazepin-2-one (8a) and the corresponding 8-ethoxycarbonyl analog 8c exhibited weak anticonvulsant activity indicating that 8a and 8c may be acting at the same site as the 7-halo-1,4-benzodiazepin-2-one class of compounds.  相似文献   

12.
Refluxing of 1,3‐oxazolone ( 1a ) with malononitrile in dry benzene and in the presence of ammonium acetate afforded imidazolone derivative ( 2 ). However, carrying out the same reaction in absolute ethanol and in the presence of piperidine as a base gave the benzamide derivative ( 4 ). Fusion of ( 1a ) with p‐anisidine gave the open adduct benzamide ( 6 ), which cyclized in acidic medium to give imidazolone derivative ( 7 ). Heating of imidazolone ( 7 ) with malononitrile above its melting point afforded 1,3‐diazepine derivative ( 8 ). Reaction of the carbohydrazide ( 9 ) with isatin in ethanol gives the corresponding Schiff base ( 11 ), which then reacted with acetyl acetone, ethyl acetoacetate, ethyl cyanoacetate, and malononitrile in n‐butanol and piperidine to afford benzamide derivative ( 13 , 14 , 15 ) and ( 16 ), respectively. The structures of the newly synthesized compounds were established on the basis of IR, 1H‐NMR, mass spectra, and elemental analyses.  相似文献   

13.
2-Phenyl-1, 2, 3-triazole-4-formylhydrazine (2) was prepared by hydrazinolysis of the corresponding ester 1. Reaction of 2 with CS2/KOH gave the oxadiazole derivatives (3) which via Mannich reaction with different dialkyl amines furnished 3-N, N-dialkyl derivatives (4a–c). Also, condensation of 2 with appropriate aromatic acid in POCI3 yielded oxadiazole derivatives (5a–c), or with aldehydes and ketones afforded hydrazones (6a–c). Cyclization of (6a–c) with acetic anhydride gave the desired dihydroxadiazole derivatives (7a–c). On the other hand, reaction of dithiocarbazate (8) with hydrazine hydrate gave the corresponding triazole derivative (9) which on treatment with carboxylic acids in refluxing POCI3 yielded s-triazole [3, 4–b]-1, 3, 4-thiadiazole derivatives (10a–b). The structures of all the above compounds were confirmed by means of IR, 1H NMR, MS and elemental analysis.  相似文献   

14.
The reactions of 7-chloro-9-methylthio-3-phenylpyrimido[5,4-f][1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine (1) with some nucleophiles have been studied. Substitution of the chlorine atom with hydrogen occurs with ammonia in DMSO to give 9-methylthio-3-phenylpyrimido[5,4-f][1,2,4]triazolo[3,4-b][1,3,4]thiadiazepin-7(8H)-one. With a methanolic solution of ammonia the 7-methoxy derivative is formed. Reaction of compound 1 with an excess of sodium methoxide in methanol gave 6,7-dimethoxy-9-methylthio-3-phenyl-5,6-dihydropyrimido[5,4-f][1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine. The corresponding 7-substituted derivatives were obtained when compound 1 was heated with morpholine or 2-(dimethylamino)ethylamine. The azomethine bond of the thiadiazepine ring is reduced by sodium borohydride to give the corresponding 5,6-dihydro derivatives.  相似文献   

15.
A series of nitroimidazoles were subjected to hydroxymethylations under a variety of conditions. Hydroxymethylation of 1-(2-hydroxyethyl), 1-(2-acetoxyethyl), and 1-(2-chloroethyl) substituted 5-nitroimidazoles with paraformaldehyde in dimethyl sulfoxide yielded the respective 2-hydroxymethyl analogs (5–7). However, attempts to hydroxymethylate 1-(2-hydroxyethyl), 1-(2-acetoxyethyl), 1-(2-cyanoethyl) substituted 4-nitroimidazoles and 1-(2-hydroxyethyl)-2-nitroimidazole were unsuccessful. Treatment of 1-(2-acetoxyethyl)-5-nitro-2-imidazolecar-baldehyde(10) with hydroxylamine-O-sulfonic acid afforded a mixture of corresponding 2-carbonitrile (12) and 2-(N-hydroxy)carboximidamide (13). Hydrolysis of 10 with ethanolic hydrochloric acid yielded 8-ethoxy-5,6-dihydro-3-nitro-8H-imidazo[2,1-c] [1,4]oxazine (11) which, on subsequent reaction with hydroxylamine-O-sulfonic acid, afforded 1-(2-hydroxyethyl)-5-nitroimidazole-2-(N-hydroxy)carboximidamide (15). Reaction of 4(5)-nitroimidazole with chloropropionitrile produced a mixture of the isomeric 1-(2-cyanoethyl) substituted 4- and 5-nitroimidazoles. Treatment of 2,4(5)-dinitroímidazole with chloropropionitrile afforded a mixture of 4(5)-chloro-5(4)-nitroimidazole and 1-(2-cyanoethyl)-4-nitro-5-chloroimidazoIe. Reaction of nitroimidazoles with acrylonitrile in the presence of Triton B yielded the corresponding 1-(2-cyanoethyl) substituted derivatives.  相似文献   

16.
Reaction of benzotriazol‐1‐yl acetone 1 with phenyl isothiocyanate followed with α‐chloroacetone or ethyl‐α‐chloroacetate afforded 2‐anilinothiophenes 3 or 4 , respectively. Treatment of 3 with malononitrile at different reaction conditions afforded 6 or 7 . Reaction of 1 with CS2 in DMF and phenacylbromide afforded S‐alkylated thiophene 10 . Reactions of the latter compound with different active methylene nitriles afforded thienylthiopyridine derivatives 14 and 15 . Condensation of 10 with hydrazine hydrate afforded hydrazon derivative 16 . Reaction of thiophene 17 with formamide in DMF afforded 19 which converted to N‐thienylpyrimidine 20 when treated with malononitrile. The structure of the newly synthesized compounds has been established on the basis of their analytical and spectral data. The compounds were also investigated for antibacterial and antifungal activities.  相似文献   

17.
Bromination of 1-arylsulfonyl-1,2-propanedione-1-aryl-hydrazones 7 in a mixture of acetic acid and acetic anhydride in the presence of sodium acetate gave N-aryl-C-arylsulfonylformohydrazidoyl bromides 5. Treatment of 5 with dibenzoylmethane, acetylacetone, ethyl acetoacetate and ethyl benzoylacetate in ethanol in the presence of sodium ethoxide yielded the pyrazole derivatives 8-11 , respectively. Reaction of 5 with potassium thiocyanate afforded the thiadiazoline derivative 14. The bromides 5 also react with nucleophiles such as morpholine, piperidine, phenoxide, thiophenoxide and benzenesulfinate anions to give the corresponding substitution products 19-23 , respectively. The structures of the products 8-23 were assigned and confirmed on the basis of their spectral and elemental analyses, their chemical behaviour and alternate synthesis wherever possible.  相似文献   

18.
The N-oxide 2 of furo[3,2-b]pyridine ( 1 ) was cyanated by the Reissert-Henze reaction with potassium cyanide and benzoyl chloride to give 5-cyano derivative 3 , which was converted to the carboxamide 4 , carboxylic acid 5 , ethyl ester 6 and ethyl imidate 8 . Chlorination of 2 with phosphorus oxychloride yielded 2-9a , 3- 9b , 5- 9c and 7-chloro derivative 9d . Reaction of 9d with sodium methoxide, pyrrolidine, N,N-dimethylformamide and ethyl cyanoacetate afforded 7-methoxy- 10 , 7-(1-pyrrolidyl)- 11 and 7-dimethylaminofuro[3,2-b]pyridine ( 14 ) and 7-(1-cyano-1-ethoxy-carbonyl)methylene-4,7-dihydrofuro[3,2-b]pyridine ( 12 ). Nitration of 2 with a mixture of fuming nitric acid and sulfuric acid gave 2-nitrofuro[3,2-b]pyridine N-oxide ( 15 ).  相似文献   

19.
Several 3-alkoxysubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides structurally related to adenosine, inosine and guanosine have been prepared by the direct glycosylation of preformed aglycon precursor containing a 3-alkoxy substituent. Ring closure of 5(3)-amino-3(5)-ethoxypyrazole-4-carboxamide ( 6b ) with either formamide or potassium ethyl xanthate gave 3-ethoxyallopurinol ( 7b ) and 3-ethoxy-6-thioxopyrazolo[3,4-d]-pyrimidin-4(5H,7H)-one ( 10 ), respectively. Methylation of 10 gave the corresponding 6-methylthio derivative 15 . Similar ring annulation of 5(3)-methoxypyrazole-4-carboxamide ( 6a ) with formamide afforded 3-methoxyallopurinol ( 7a ). Treatment of 5(3)-amino-3(5)-methoxypyrazole-4-carbonitrile ( 5a ) with formamidine acetate furnished 4-amino-3-methoxypyrazolo[3,4-d]pyrimidine ( 4 ). High-temperature glycosylation of 7b with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of boron trifluoride etherate gave a 2:1 mixture of N-1 and N-2 glycosyl blocked nucleosides 11b and 13b . Deprotection of 11b and 13b with sodium methoxide gave 3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 12b ) and the corresponding N-2 glycosyl isomer 14b , respectively. Similar glycosylation of either 4 or 7a , and subsequent debenzoylation gave exclusively 4-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine ( 9 ) and 3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-(5H)-one ( 12a ), respectively. The structural assignment of 12a was made on the basis of single-crystal X-ray analysis. Application of this general glycosylation procedure to 15 gave the corresponding N-1 glycosyl derivative 16 as the sole product, which on debenzoylation afforded 3-ethoxy-6-(methylthio)-1-(3-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ). Oxidation of 16 and subsequent ammonolysis furnished the guanosine analog 6-arnino-3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]-pyrimidin-4(5H)-one ( 19 ). Similarly, starting from 3-methoxy-4,6-bis(methylthio)pyrazolo[3,4-d]pyrimidine ( 20 ), 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 23 ) was prepared.  相似文献   

20.

Abstract  

Potassium hydrazinecarbodithioate were prepared by treatment of acid hydrazides with carbon disulfide in the presence of potassium hydroxide. Reaction of this potassium salt with hydrazine hydrate, phenacyl bromide, or hydrazonoyl chlorides afforded 1,2,4-triazole, 1,3-thiazole, and 1,3,4-thiadiazoles. Reaction of 1,2,4-triazole with phenacyl bromide or hydrazonoyl chlorides afforded the corresponding 1,2,4-triazolo[3,4-b][1, 3, 4]-thiadiazines. All these new compounds were screened for antibacterial and antifungal activity. Some had promising activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号