首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An aromatic, diether-linked phthalonitrile resin, prepared from 4,4′-bis(3,4-dicyanophenoxy)biphenyl, exhibits excellent thermo-oxidative properties. The resin is easily processed from the melt of the monomer in a controlled manner as a function of the amine curing agent and processing temperatures. Polymerization occurs by a cyclic addition reaction without the formation of volatile by-products. The polymerization reaction can be stopped at a prepolymer stage. The prepolymer can be stored indefinitely at ambient conditions without further reaction. The modulus and viscoelastic properties of the resin were found to be a function of the postcuring conditions.  相似文献   

2.
This contribution presents an overview of the study of the effect of stretching on semicrystalline and amorphous complexes of poly(ethylene oxide) (PEO) with different salts, such as lithium iodide, lithium trifluoromethane-sulfonate, lithium hexafluoroarsenate, lithium bis(oxalato)borate and lithium trifluoromethanesulfonimide. In spite of the conventional belief that ion transport in polymer electrolytes (PE) is mediated primarily by polymer segmental motion, we suggest that ion transport occurs preferentially along the PEO helical axis, at least in the crystalline phase. It was found that the more amorphous the PE, the less its lengthwise conductivity is influenced by stretching. It is suggested that the rate-determining step of ion conduction in semicrystalline LiX:P(EO)20, polymer electrolytes below the melting point (Tm) is “interchain” hopping.  相似文献   

3.
Cation conductive membranes, especially highly proton conductive membranes, are of interest not only for chlor-alkali electrolysis but for polymer electrolyte fuel cells as well. The very challenge for electrochemical characterization in this case is the low specific resistance of the polymer required for such applications, which in turn makes resistance measurements a non-trivial problem. We investigate the different possibilities to characterize such membranes. The present part of our work deals with the adequate conditioning and equilibration of membranes designed especially for direct methanol fuel cell applications, with the measurement of the conductivity and with the determination of apparent transport numbers in the membrane. The usefulness of the respective leaching investigations, impedance spectroscopy measurements and concentration potential measurements for the case of membranes made from sulfonated poly(phenylene oxide) is discussed.  相似文献   

4.
We have investigated the electrochemical synthetic mechanism of conductive polymer nanotubes in a porous alumina template using poly(3,4-ethylenedioxythiophene) (PEDOT) as a model compound. As a function of monomer concentration and potential, electropolymerization leads either to solid nanowires or to hollow nanotubes, and it is the purpose of these investigations to uncover the detailed mechanism underlying this morphological transition between nanowire and nanotube. Transmission electron microscopy was used to characterize electrochemically synthesized PEDOT nanostructures and measure the extent of their nanotubular portion quantitatively. The study on potential dependency of nanotubular portion shows that nanotubes are grown at a low oxidation potential (1.2 V vs Ag/AgCl) regardless of monomer concentration. This phenomenon is attributed to the predominance of electrochemically active sites on the annular-shape electrode at the pore bottom of a template. The explanation was supported by a further electrochemical study on a flat-top electrode. We elaborate the mechanism by taking into account the effect of electrolyte concentration, temperature, and template pore diameter on PEDOT nanostructures. This mechanism is further employed to control the nanotube dimensions of other conductive polymers such as polypyrrole and poly(3-hexylthiophene).  相似文献   

5.
New hybrid membranes for fuel cell applications based on sulfonated poly(ether ether ketone) (SPEEK) and phosphonated polysilsesquioxanes were synthesized. The impedance spectroscopy measurements show an increase of the proton conductivity for all studied composites, in comparison to plain SPEEK. For hybrid membranes containing 20 wt% of polysilsesquioxane with 80 mol% of phosphonated units the conductivities can reach values that are similar to Nafion 117® at 100% RH. The best results of proton conductivity (142 mS/cm) were obtained for composites with 40 wt% of the same polysilsesquioxane at 120 °C also at 100% RH.  相似文献   

6.
Reisberg S  Dang LA  Nguyen QA  Piro B  Noel V  Nielsen PE  Le LA  Pham MC 《Talanta》2008,76(1):206-210
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probe is presented. PNA were attached covalently onto a quinone-based electroactive polymer. Changes in flexibility of the PNA probe strand upon hybridization generates electrochemical changes at the polymer-solution interface. A reagentless and direct electrochemical detection was obtained by detection of the electrochemical changes using square wave voltammetry (SWV). An increase in the peak current of quinone was observed upon hybridization of probe on the target, whereas no change is observed with non-complementary sequence. In addition, the biosensor is highly selective to effectively discriminate a single mismatch on the target sequence. The sensitivity is also presented and discussed.  相似文献   

7.
Despite the tremendous sensitivity and lower sample requirements for nanospray vs. conventional electrospray, metallized nanospray emitters have suffered from one of two problems: low mechanical stability (leading to emitter failure) or lengthy, tedious production methods. Here, we describe a simple alternative to metallized tips using polyaniline (PANI), a synthetic polymer well known for its high conductivity, anticorrosion properties, antistatic properties, and mechanical stability. A simple method for coating borosilicate emitters (1.2 mm o.d.) pulled to fine tapers (4 ± 1 μm) with water-soluble and xylene-soluble dispersions of conductive polyaniline (which allows for electrical contact at the emitter outlet) is described. The polyaniline-coated emitters show high durability and are resistant to electrical discharge, likely because of the thick (yet optically transparent) coatings; a single emitter can be used over a period of days for multiple samples with no visible indication of the destruction of the polyaniline coating. The optical transparency of the coating also allows the user to visualize the sample plug loaded into the emitter. Examples of nanospray using coatings of the water-soluble and xylene-soluble polyaniline dispersions are given. A comparison of PANI-coated and gold-coated nanospray emitters to conventional electrospray ionization (ESI) show that PANI-coated emitters provide similar enhanced sensitivity that gold-coated emitters exhibit vs. conventional ESI.  相似文献   

8.
Conductive films of gold were assembled on flexible polymer substrates such as Kapton and polyethylene using a solution-based process. The polymer substrates were modified by using argon plasma and subsequent coupling of silanes with amino- or mercapto- terminal groups. These modified surfaces were examined by X-ray photoelectron spectroscopy and contact angle measurements. Colloidal gold was assembled onto the silane-modified surface from solution. The gold particles are attached to the surface by covalent interactions with the thiol or amine group. Formation of a conductive film is achieved by increasing the coverage of gold by using a "seeding" method to increase the size of the attached gold particles. Field emission scanning electron microscopy was used to follow the growth of the film. The surface resistance of the films, measured using a four-point probe, was about 1 Omega/sq.  相似文献   

9.
The selection of a polymer matrix for a conductive blend with polyaniline and para-toluene sulfonic acid (PANI-pTSA) was performed using molecular simulation techniques, both a fast quantitative structure–properties relationship method as a first screening phase followed by atomistic simulation. Using the atomistic simulation method, the solubility parameters and the heat of mixing of each blend were calculated to enable the determination of compatible matrices in blends with PANI-pTSA, which was validated by experimental scanning electron microscopy fractographs. Based on such calculations, polycaprolactone (PCL)/PANI-pTSA phase diagrams were estimated, showing slight miscibility of polydispersed PANI in PCL, particularly the short chains fraction, at the elevated melt processing temperature. It was suggested that this partial miscibility at the elevated temperature might lead to a conductive network morphology of PANI in PCL at room temperature, because of phase separation and precipitation of soluble PANI molecules, upon cooling and solidification of the melt. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
A substantial approach to one‐dimensional (1D) electrically conductive composites was proposed which was based on the thermodynamic analysis of electric‐field‐induced particle alignment in a nonpolar thermoplastic polymer matrix. The process condition window was based on the real‐time exploration of dynamic percolation under different electric fields with carbon black (CB)‐filled polyethylene as a model. The CB content was the main factor of the process condition. Its upper limit was set as the critical percolation concentration at the thermodynamic equilibrium state without an electric field to eliminate the possibility of conductive network formation perpendicular to the electric‐field direction, whereas its lower limit the critical percolation concentration at the thermodynamic equilibrium state under a critical electric field (E*). A composite with CB content in this window, isothermally treated in an electric field not less than E*, showed conductivity in the electric‐field direction about 105 times larger than that in the perpendicular direction. A 1D cluster structure in the direction of the electric filed was confirmed with scanning electron microscopy morphology observations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 184–189, 2005  相似文献   

11.
Conductive polymer nanolines having widths as small as 45 nm were obtained on glass using a novel scanning probe lithographic (SPL) technique at writing speeds of >5 mum/s. Herein we demonstrate that our nanowriting is >1500 times faster than current SPL nanoscale writing of conductive polymers. The lack of a specific restriction on the choice of substrates and the ability to write within a polymer matrix to provide a continuous film that is either 2-D or 2.5-D provide tremendous potential for our SPL technique in nanotechnology and plastic electronics applications.  相似文献   

12.
Conductive polymer hydrogels (CPHs), which combine the unique advantages of hydrogels and organic conductors, have received wide attention due to their adjustable mechanical properties, biocompatibility, self‐healing, hydrophilicity, and ease of preparation. With doping engineering and incorporation with other functional nanomaterials, CPHs have exhibited excellent physical/chemical properties. CPHs have been widely used in various electronic devices, especially in the field of sensors due to its sensitivity to external stimuli. This review summarizes recent progress in CPHs from the aspect of the CPHs' properties and their application in advanced sensor technology. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1606–1621  相似文献   

13.
Composite electrodes represent an important class of electromaterials, with enhanced functional properties tailored for targeted applications. Introduction of graphene as a conductive nanofiller into the thermoplastic polyurethane (PU) provides electrodes with interesting properties. In this study, a highly conductive cathodically exfoliated graphene (CEG) of ~2–8 μm lateral size was employed to prepare CEG-PU composites. The use of this larger graphene sheet requires loading of at least 20% w/w graphene to promote contact between the sheets, hence the conductivity. The CEG-PU composite electrodes were tested to determine their electrochemical capacitance and it was found that the 40% (w/w) CEG-PU composite shows areal capacitance, energy density, and power density of 2.51 mF/cm2, 1.56 μW/h/cm2, and 0.48 mW/cm2, respectively, at a current density of 0.2 mA/cm2 and an operating voltage of 1.0 V. In summary, the CEG-PU composite electrodes have excellent conductivity, chemical/mechanical properties, and capacitive performance.  相似文献   

14.
Five ionic imidazolium based monomers, namely 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethylsulfonyl)imide (ILM1), 1‐vinyl‐3‐(diethoxyphosphinyl)‐propylimidazolium bis(trifluoromethylsulfonyl)imide (ILM2), 1‐[2‐(2‐methyl‐acryloyloxy)‐propyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM3), 1‐[2‐(2‐methyl‐acryloyloxy)‐undecyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM4), 1‐vinyl‐3‐ethylimidazolium dicyanamide (ILM5) were prepared and used for the synthesis of linear polymeric ionic liquids (PILs), crosslinked networks with polyethyleneglycol dimethacrylate (PEGDM) and interpenetrating polymer networks (IPNs) based on polybutadiene (PB). The ionic conductivities of IPNs prepared using an in situ strategy were found to depend on the ILM nature, Tg and the ratio of the other components. Novel ionic IPNs are characterized by increased flexibility, small swelling ability in ionic liquids (ILs) along with high conductivity and preservation of mechanical stability even in a swollen state. The maximum conductivity for a pure IPN was equal to 3.6 × 10?5 S/cm at 20 °C while for IPN swollen in [1‐Me‐3‐Etim] (CN)2N σ reached 8.5 × 10?3 S/cm at 20 °C or 1.4 × 10?2 S/cm at 50 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4245–4266, 2009  相似文献   

15.
陆昶  张玉清 《高分子科学》2010,28(6):869-876
<正>An innovational method that poly(styrene-co-maleic anhydride)(SMA),a compatibilizer of immiscible nylon6/polystyrene(PA6/PS) blends,was first reacted with carbon black(CB) and then blended with PA6/PS,has been employed to prepare the PA6/PS/(SMA-CB) composites of which CB localized at the interface.In PA6/PS/CB blends,CB was found to preferentially localize in the PA6 phase.However,in the PA6/PS/(SMA-CB) blends,it was found that CB particles can be induced by SMA to localize at the interface.The electrical porperties of PA6/PS/(SMA-CB) composites were investigated.The results showed that the composites exhibited distinct triple percolation behavior,i.e.the percolation is governed by the percolation of CB in SMA phase,the continuity of SMA-CB at the interface and the continuity of PA6/PS interface.The percolation threshold of PA6/PS/(SMA-CB) was only 0.15 wt%,which is much lower than that of PA6/PS/CB.Moreover,the PTC(positive temperature coefficient) intensity of PA6/PS/(SMA-CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient(NTC) effect was eliminated.The electrical properties of PA6/PS/(SMA-CB) were explained in terms of its special interface morphology:SMA and CB localize at interphase to form the conductive pathways.  相似文献   

16.
The reduction of graphite oxide (GO) in the presence of reactive poly(methyl methacrylate) (PMMA), under mild biphasic conditions, directly affords graphene grafted with PMMA. The resulting nanocomposite shows excellent electrical conductivities resulting from the optimal dispersion and exfoliation of graphene in the polymer matrix.  相似文献   

17.
Conductive polymer-coated carbon papers have been fabricated through polymerisation of pyrrole-based monomers oxidised with various heteropolyacids. Smooth surfaces are obtained when multiple coatings are applied to the carbon surface and give good contact with the Nafion® electrolyte. Cyclic voltammetry was used to study the electrodes and a.c. impedance and charge / discharge cycling was used to study membrane electrode assemblies (MEA). MEAs were fabricated using a hot-press technique.  相似文献   

18.
All-polymer electrostrictive soft films were developed for the first time by depositing conductive polymer (polypyrrole) directly on both sides of solution-cast electrostrictive polyurethane elastomer films. The final composite films are flexible with strong adhesion between the polyurethane film and the conductive polymer electrode. The conductivity (sheet resistivity ∼1000 Ω/□), of the polymer electrode is appropriate for its intended use. The compatible interface between the polypyrrole electrode polymer and the electrostrictive polyurethane significantly improves the acoustic and optical transparency of these composite films, compared with using a metal electrode film. The all-polymer films also exhibit comparable dielectric properties to gold-electroded polyurethane films in the temperature range from −40°C to +80°C. The temperature range covers the soft segment glass transition temperature of the polyurethane elastomers, which is about −20°C. The films also show large electric field induced strain responses which are dependent on film thickness and measurement frequency. The electrostrictive characteristics in the all-polymer films show similarities to those of the films with gold electrodes under identical measurement conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Polyaniline could be easily converted into nitrosated polyaniline by reaction with nitrite ion in acids. The product is soluble in common solvents and could be deposited into thin films. The nitrosated polyaniline could be back-converted into polyaniline by acid hydrolysis. On the basis of those properties, a simple chemical lithographic process to produce conductive polyaniline images is demonstrated.  相似文献   

20.
Lightweight conductive polymers are considered for lightning strike mitigation in composites by synthesizing intrinsically conductive polymers (ICPs) and by the inclusion of conductive fillers in insulating matrices. Conductive films based on polyaniline (PANI) and graphene have been developed to improve through‐thickness conductivity of polymer composites. The result shows that the conductivity of PANI enhanced by blending polyvinylpyrrolidone (PVP) and PANI in 3:1 ratio. Conductive composite thin films are prepared by dispersing graphene in PANI. The conductivity of composite films was found to increase by 40× at 20 wt% of graphene inclusion compared with PVP and PANI blend. Fourier‐transform‐infrared (FTIR) spectra confirmed in situ polymerization of the polymer blend. The inclusion of graphene also exhibits an increase in Tg by 21°C. Graphene additions also showed an increase in thermal stability by approximately 148°C in the composite films. The mechanical result obtained from DMA shows that inclusion of graphene increases the tensile strength by 48% at 20 wt% of graphene reinforcement. A thin, highly conductive surface that is compatible with a composite resin system can enhance the surface conductivity of composites, improving its lightning strike mitigation capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号