首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of ester enolates was investigated by the technique of collision-induced dissociation (CID) using a Fourier transform mass spectrometer. Two primary modes of fragmentation were observed which led to CID products characteristic of the acyl and alkoxyl moieties of the ester enolates. An investigation of the fragmentation mechanism revealed that the primary fragmentation mode appears to be a sensitive function of the structure and the proton affinities of the two possible product ions. In most cases the anion (ketenyl or alkoxide) with the lower proton affinity was observed as the threshold product, suggestive of a proton-bound dimer intermediate. Interesting secondary dissociations were observed to occur from the primary product ions, as alkoxide ions fragmented to enolate ions or other stabilized anions.  相似文献   

2.
The charge exchange mass spectra of 14 C6H12 isomers have been determined using [CS2], [COS], [Xe], [CO], [N2] and [Ar] as the major reactant ions covering the recombination energy range from ∼10.2 eV to ∼15.8 eV. From the charge exchange data breakdown graphs have been constructed expressing the energy dependence of the fragmentation of the isomeric [C6H12] molecular ions. The electron impact mass spectra are discussed in relation to these breakdown graphs and approximate internal energy distribution functions derived from photoelectron spectra.  相似文献   

3.
4.
The reaction of [OH]? with 2-pentanone produces two enolate ions, [CH3CH2CH2COCH2]? and [CH3COCHCH2CH3]?, by proton abstraction from C(1) and C(3), respectively. Using deuterium isotopic labelling the fragmentation reactions of each enolate have been delineated for collisional activation at both high (8 keV) and low (5–100 eV) collisional energies. The primary enolate ion fragments mainly by elimination of ethene. Two mechanisms operate: elimination of C(4) and C(5) with hydrogen migration from C(5), and elimination of C(3) and C(4) with migration of the C(5) methyl group. Minor fragmentation of the primary enolate also occurs by elimination of propane and elimination of C2H5; the latter reaction involves specifically the terminal ethyl group. The secondary enolate ion fragments mainly by loss of H2 and by elimination of CH4; for the latter reaction four different pathways are operative. Minor elimination of ethene also is observed involving migration of a C(5) hydrogen to C(3) and elimination of C(4) and C(5) as ethene.  相似文献   

5.
Collisionally activated charge reversal of HCOCH2? and CH3COCH2? produces positive ions whose fragments differ from those of other [C2H3O]+ ions formed by fragmentation of positive molecular ions, including the [C2H3O]+ ions from 2,2-dichlorethanol, considered formerly to have the HCOCH2+ structure. The fragmentations of the charge reversed ions are concordant with the RCOCH2+ structures. Least-squares correlations of the collisional activation spectra [C2H3O]+ are probed as a useful guide to claiming similarity or dissimilarity of ionic structure.  相似文献   

6.
7.
8.
9.
The collisional charge inversion and neutralization-reionization (?NR) mass spectra of the enolate ions of m/z 115 derived from the four butyl acetates, the two propyl propionates, ethyl butyrate, ethyl isobutyrate, methyl valerate, methyl 2-methylbutyrate and methyl 3-methylbutyrate were recorded. The major primary fragmentation reactions of the unstable carbenium ion formed by charge inversion involve elimination of an alkoxy radical to form a ketene or alkylketene molecular ion and formation of an alkyl ion consisting of the R1 group of RCOOR1. A minor fragmentation reaction involves elimination of an alkyl radical by cleavage of a C? C bond α to the ether oxygen. The alkylketene ions fragment by β-cleavage eliminating an alkyl radical to form an olefinic acylium ion. In most cases the charge inversion mass spectra of the enolate ions allow identification of the ester.  相似文献   

10.
The ester enolates of allylα-hydroxyacetates and α-phenylthioacetates undergo a Claisen rearrangement to give α-substituted-γ,δ-unsaturated acids.  相似文献   

11.
Tandem mass spectrometric experiments have been carried out on the protonated amides H-Gly-Ala-NH2, H-Ala-Gly-NH2, H-Ala-Val-NH2, H-Val-Ala-pNA, H-Leu-Phe-NH2, H-Phe-Leu-NH2, H-Phe-Tyr-NH2 and H-Tyr-Phe-NH2 with particular emphasis on the fragmentation of the isomeric a2 ions derived therefrom. Primary fragmentation reactions of the protonated amides involve formation of the y1" and b2 ions with further fragmentation of the b2 ion to form the a2 ion which fragments to form iminium ions. Collision-induced dissociation studies of the mass-selected a2 ions were carried out. For the Gly-Ala, Ala-Gly and Val-Ala a2 ions, weak signals were observed corresponding to loss of CO from the a2 ion. With the exception of the Gly-Ala, Ala-Gly and Val-Ala a2 ions, both possible iminium ions (a1 and the internal iminium ion) are observed with the most abundant being that formed by proton attachment to the imine of higher proton affinity. The results provide strong support for the recently proposed (El Aribi et al. J. Am. Chem. Soc. 2003; 125: 9229) mechanism of fragmentation of a2 ions which involves elimination of CO from the a2 ion to form a proton-bound complex of two imines. Based on this mechanism ab initio calculations of the total energies of the a2 ions and the transition states for fragmentation have been carried out giving the energy barrier for fragmentation of each a2 ion. The experimental results are interpreted in terms of these energetics data, unimolecular rate constants calculated by using the RRKM theory, and the imine proton affinities.  相似文献   

12.
Breakdown graphs have been constructed from charge exchange data for the epimeric 2-methyl-, 3-methyl- and 4-methyl-cyclohexanols. Although the breakdown graphs for epimeric pairs are essentially identical above ~12 eV recombination energy, significant differences are observed for the epimeric 2-methyl- and 4-methyl-cyclohexanols at low internal energies. For the 2-methylcyclohexanols the ratio ([M? H2O]/[M])cis/([M? H2O]/[M])trans is 3.2 in the [C6F6] charge exchange mass spectra. This is attributed to both energetic and conformational effects which favour the stereospecific cis-1,4-H2O elimination for the cis epimer. The breakdown graph for trans-4-methylcyclohexanol shows a sharp peak in the abundance of the [M? H2O] ion at ~10 eV recombination energy which is absent from the breakdown graph for the cis epimer. This peak is attributed to the stereospecific cis-1,4-elimination of water from the molecular ion of the trans isomer; the reaction appears to have a low critical energy but a very unfavourable frequency factor, and alternative modes of water loss common to both epimers are observed at higher energies. As a result, in the [C6F6] charge exchange mass spectra the ([M? H2O]/[M])trans/([M? H2O]/[M])cis ratio is ~24, compared to the value of 13 observed in the 70 eV EI mass spectra. No differences are observed in either the metastable ion abundances or the associated kinetic energy releases for epimeric molecules.  相似文献   

13.
Mixed aggregates of chiral lithium amide and lithium ester enolate have been employed in the enantioselective conjugate addition on alpha,beta-unsaturated esters. Michael adducts were obtained in ee's up to 76% combining a lithium enolate and a chiral 3-aminopyrrolidine lithium amide. The sense of the induction was found to be determined by both the relative configuration of the stereogenic centers borne by the amide and the solvent in which the reaction was conducted. [reaction: see text]  相似文献   

14.
《Tetrahedron letters》1986,27(8):943-946
Highly diastereoselective intramolecular alkylation of acyclic ester system was developed based upon allylic strain concept as an approach to trans-hydrindane system.  相似文献   

15.
16.
The mutual interconversion of the molecular ions [C5H6O]+ of 2-methylfuran (1), 3-methylfuran (2) and 4H-pyran (3) before fragmentation to [C5H5O]+ ions has been studied by collisional activation spectrometry, by deuterium labelling, by the kinetic energy release during the fragmentation, by appearance energles and by a MNDO calculation of the minimum energy reaction path. The electron impact and collisional activation mass spectra show clearly that the molecular ions of 1–3 do not equilibrate prior to fragmentation, but that mostly pyrylium ions [C5H5O]+ arise by the loss of a H atom. This implies an irreversible isomerization of methylfuran ions 1 and 2 into pyran ions before fragmentation, in contrast to the isomerization of the related systems toluene ions/cycloheptatriene ions. Complete H/D scrambling is observed in deuterated methylfuran ions prior to the H/D loss that is associated with an iostope effect kH/kD = 1.67–2.16 for metastable ions. In contrast, no H/D scrambling has been observed in deuterated 4H-pyran ions. However, the loss of a H atom from all metastable [C5H5O]+ ions gives rise to a flat-topped peak in the mass-analysed ion kinetic energy spectrum and a kinetic energy release (T50) of 26 ± 1.5 kJ mol?1. The MNDO calculation of the minimum energy reaction path reveals that methylfuran ions 1 and 2 favour a rearrangement into pyran ions before fragmentation into furfuryl ions, but that the energy barrier of the first rearrangement step is at least of the same height as the barrier for the dissociation of pyran ions into pyrylium ions. This agrees with the experimental results.  相似文献   

17.
The 1,1-dimethylhydrazine ion ((CH3)2NNH2+*) has two low-energy dissociation channels, the loss of a hydrogen atom to form the fragment ion m/z 59, (CH3)(CH2)NNH2+, and the loss of a methyl radical to form the fragment ion m/z 45, the methylhydrazyl cation, CH3NNH2+. The dissociation of the 1,1-dimethylhydrazine ion has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy, in the photon energy range 8.25-31 eV, and tandem mass spectrometry. Theoretical breakdown curves have been obtained from a variational transition state theory (VTST) modeling of the two reaction channels and compared to those obtained from experiment. Seven transition states have been found at the B3-LYP/6-31+G(d) level of theory for the methyl radical loss channel in the internal energy range of 2.32-3.56 eV. The methyl loss channel transition states are found at R(N-C) = 4.265, 4.065, 3.965, 3.165, 2.765, 2.665, and 2.565 A over this internal energy range. Three transition states have been found for the hydrogen atom loss channel: R(H-C) = 2.298, 2.198, and 2.098 A. The DeltaS++(45) value, at an internal energy of 2.32 eV and a bond distance of R(N-C) = 4.265 A, is 65 J K-1 mol-1. As the internal energy increases to 3.56 eV the variational transition state moves to lower R value so that at R(N-C) = 2.565 A, the DeltaS++ decreases to 29 J K-1 mol-1. For the hydrogen atom loss channel the variation in DeltaS++ is less than that for the methyl loss channel. To obtain agreement with the experimental breakdown curves, DeltaS++(59) = 26-16 J K-1 mol-1 over the studied internal energy range. The 0 K enthalpies of formation (DeltafH0) for the two fragment ions m/z 45 and m/z 59 have been calculated from the 0 K activation energies (E0) obtained from the fitting procedure: DeltafH0[CH3NNH2+] = 906 +/- 6 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 822 +/- 7 kJ mol-1. The calculated G3 values are DeltafH0[CH3NNH2+] = 911 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 825 kJ mol-1. In addition to the two low-energy dissociation products, 21 other fragment ions have been observed in the dissociation of the 1,1-dimethylhydrazine ion as the photon energy was increased. Their appearance energies are reported.  相似文献   

18.
Our electrospray ionization-ion funnel-rf hexapole (ESI-IF-6P) source is designed to produce ions for threshold collision-induced dissociation (TCID) studies in a guided ion beam mass spectrometer. This ion source forms an initial distribution of Ca2+(H2O) x ions where x is 6–9. A new in-source fragmentation technique within the hexapole ion guide of the source is described, which is easy to implement and of modest machining and electrical costs, and is able to generate smaller Ca2+(H2O) x complexes, where x=2–5. Fragmentation is achieved by biasing an assembly of six 0.25 in. long electrodes that are inserted between the hexapole rods. The assembly is positioned in the high-pressure region of the source such that newly formed Ca2+(H2O) x ions undergo enough collisions to become thermalized, as verified by TCID studies. From the initial distribution of ions, fragmentation proceeds along the lowest energy pathway, which corresponds to sequential water loss for most complexes. However, the Ca2+(H2O) complex cannot be formed using this method because charge separation into CaOH+ and H3O+ becomes the lowest energy pathway from the Ca2+(H2O)2 complex. Therefore, this fragmentation technique can be used to identify the critical size complex for M2+(H2O) x systems, which we define as the complex size (x) at which charge separation becomes a lower energy pathway compared with simple ligand loss.  相似文献   

19.
The energy dependence of fragmentation in a collision cell was measured for 2400 protonated peptide ions derived from the digestion of 24 proteins. The collision voltage at which the sum of the fragment ion abundances was equal to the remaining parent ion (V 1/2) was the principal measure of fragmentation effectiveness. Each class of peptides was characterized by a linear relation between V 1/2 and m/z whose slope depended on the peptide class and, with little adjustment, intersected the origin. Peptide ions where the number of protons is no greater than the number of arginine residues show the greatest slope, V 1/2/(m/z)=0.0472 (all slopes in units of V Da−1 e). For peptides where the number of protons is greater than the number of arginines, but not greater than the total number of basic residues, the slope decreases to 0.0414 for singly charged ions, 0.0382 for doubly charged, 0.0346 for triply charged, and 0.0308 for more highly charged ions. With one mobile proton, the slope is about 0.029 for singly and doubly charged ions and slightly lower for more highly charged ions. With two or more mobile protons the slope is 0.0207. By removing m/z dependence, the deviation of V 1/2 from a line provides a relative measure of the ease of fragmentation of an ion in each class. This information can guide the selection of optimal conditions for tandem mass spectrometry studies in collision cells for selected peptide ions as well as aid in comparing the reactivity of ions differing in m/z and charge state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号