首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dehydrocoupling of the sterically hindered phosphine-borane adduct tBu(2)PH.BH(3) above 140 degrees C is catalyzed by the rhodium complexes [Rh(1,5-cod)(2)][OTf] or Rh(6)(CO)(16) to give the four-membered chain tBu(2)PH-BH(2)-tBu(2)P-BH(3) (1), which was isolated in 60% yield and characterized by multinuclear NMR spectroscopy, mass spectrometry, and elemental analysis. Thermolysis of 1 in the temperature range 175-180 degrees C led to partial decomposition and the formation of tBu(2)PH.BH(3). When the dehydrocoupling of tBu(2)PH.BH(3) was performed in the presence of [[Rh(mu-Cl)(1,5-cod)](2)] or RhCl(3) hydrate, the chlorinated compound tBu(2)PH-BH(2)-tBu(2)P-BH(2)Cl (2) was formed which could not be obtained free of 1. The molecular structures of tBu(2)PH.BH(3), tBu(2)PH-BH(2)-tBu(2)P-BH(3) (1), and tBu(2)PH-BH(2)-tBu(2)P-BH(2)Cl (2) together with 1 were determined by single-crystal X-ray diffraction studies.  相似文献   

2.
We report a solid state nuclear magnetic resonance study of (23)Na, (27)Al, and (31)P in two crystalline nitridophosphate phases, Na(3)AlP(3)O(9)N and Na(2)Mg(2)P(3)O(9)N, including two-dimensional multiple-quantum magic angle spinning (MQ-MAS) experiments on (23)Na to separate overlapping lines. The previously described single-crystal structure of Na(3)AlP(3)O(9)N gives crystallographic examples of Al(OP)(6) and P(O[Al,Na])(2)(ONa)(N[P,Na]) environments and three different environments of sodium: two Na(O)(6) and one Na(O)(6)(N). From these observations we characterize the modification of the local environment of phosphorus and show that Mg only substitutes Na in the Na2 site of the Na(2)Mg(2)P(3)O(9)N structure.  相似文献   

3.
The nature of the product obtained from the title reaction has been reexamined, and identified as ClSn[W(CO)3C5H5)]3.  相似文献   

4.
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm regions, respectively. The peaks in the vacuum ultraviolet fluorescence excitation spectra are found to correspond to excitation of absorption transitions from the ground electronic state to the b (1)Pi(u), b(') (1)Sigma(u) (+), c(n) (1)Pi(u) (with n=4-8), c(n) (') (1)Sigma(u) (+) (with n=5-9), and c(4) (')(v('))(1)Sigma(u) (+) (with v(')=0-8) states of N(2). The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except for the (1,0), (5,0), (6,0), and (7,0) bands, in excellent agreement with recent lifetime measurements and theoretical calculations. Fluorescence peaks, which correlate with the long vibrational progressions of the c(4) (') (1)Sigma(u) (+) (with v(')=0-8) and the b(') (1)Sigma(u) (+) (with v(') up to 19), have been observed. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N(2). Furthermore, solar photon excitation of N(2) leading to the production of c(4) (')(0) may provide useful data required for evaluating and analyzing dayglow models relevant to the interpretation of c(4) (')(0) in the atmospheres of Earth, Jupiter, Saturn, Titan, and Triton.  相似文献   

5.
The reaction of CH(3)C(O)CH(2)O(2) with HO(2) has been studied at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/acetone/methanol/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)CH(2)O, OH and O(2) () was investigated in experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The observed prompt formation of phenol under conditions when CH(3)C(O)CH(2)O(2) reacts mainly with HO(2) indicates that this reaction proceeds partially by channel , which forms OH both directly and indirectly, by virtue of secondary generation of CH(3)C(O)O(2) (from CH(3)C(O)CH(2)O) and its reaction with HO(2) (). The secondary generation of OH radicals was confirmed by the observed formation of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel ). A number of delayed sources of OH also contribute to the observed phenol formation, such that full characterisation of the system required simulations using a detailed chemical mechanism. The dependence of the phenol and CH(3)C(O)OOH yields on the initial peroxy radical precursor reagent concentration ratio, [methanol](0)/[acetone](0), were well described by the mechanism, consistent with a small but significant fraction of the reaction of CH(3)C(O)CH(2)O(2) with HO(2) proceeding via channel . This allowed a branching ratio of k(3b)/k(3) = 0.15 +/- 0.08 to be determined. The results therefore provide strong indirect evidence for the participation of the radical-forming channel of the title reaction.  相似文献   

6.
The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.  相似文献   

7.
A synthesis of the C(29)-C(45) bis-pyran subunit 2 of spongistatin 1 (1a) is described. The synthesis proceeds in 19 steps from the chiral aldehyde ent-7, and features highly diastereoselective alpha-alkoxyallylation reactions using the gamma-alkoxy substituted allylstannanes 17 and 19, as well as a thermodynamically controlled intramolecular Michael addition to close the F-ring pyran. The E ring was assembled via the Mukaiyama aldol reaction of F-ring methyl ketone 3 and the 2,3-syn aldehyde 4.  相似文献   

8.
9.
Russian Journal of Coordination Chemistry - A new structural polymorph of the compound [Eu(ε-C6H11NO)8][Cr(NCS)6] was isolated from the solid product mixture obtained in the reaction of EuCl3,...  相似文献   

10.
11.
The spin lattice model for the spin-gapped layered magnetic solids Na3Cu2SbO6 and Na2Cu2TeO6 was examined by evaluating the three spin exchange interactions of their Cu2MO6 (M = Sb, Te) layers in terms of spin dimer analysis based on extended Hückel tight binding calculations and mapping analysis based on first principles density functional theory electronic band structure calculations. For both compounds, our calculations show that the two strongest spin exchange interactions, that is, the Cu-O...O-Cu super-superexchange (J2) and the Cu-O-Cu superexchange (J1) interactions, form alternating chains that interact weakly through the Cu-O-Cu superexchange (J3) interactions. The dominant one of the three spin exchange interactions is J2, and it is antiferromagnetic in agreement with the fact that both of the compounds are spin gapped. For Na3Cu2SbO6 and Na2Cu2TeO6, the superexchange J1 is calculated to be ferromagnetic, hence, leading to the alternating chain model in which antiferromagnetic and ferromagnetic spin exchange interactions alternate. This picture does not agree with the recent experimental analysis, which showed that the temperature-dependent magnetic susceptibilities of both compounds should be described by the alternating chain model in which two antiferromagnetic spin exchange interactions of different strengths alternate.  相似文献   

12.
The complex doublet potential energy surface of the CH(2)NO(2) system is investigated at the B3LYP/6-31G(d,p) and QCISD(T)/6-311G(d,p) (single-point) levels to explore the possible reaction mechanism of the triplet CH(2) radical with NO(2). Forty minimum isomers and 92 transition states are located. For the most relevant reaction pathways, the high-level QCISD(T)/6-311 + G(2df,2p) calculations are performed at the B3LYP/6-31G(d,p) geometries to accurately determine the energetics. It is found that the top attack of the (3)CH(2) radical at the N-atom of NO(2) first forms the branched open-chain H(2)CNO(2) a with no barrier followed by ring closure to give the three-membered ring isomer cC(H(2))ON-O b that will almost barrierlessly dissociate to product P(1) H(2)CO + NO. The lesser followed competitive channel is the 1,3-H-shift of a to isomer HCN(O)OH c, which will take subsequent cis-trans conversion and dissociation to P(2) OH + HCNO. The direct O-extrusion of a to product P(3) (3)O + H(2)CNO is even much less feasible. Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the title reaction is expected to be rapid, as is consistent with the measured large rate constant at room temperature. Formation of the other very low-lying dissociation products such as NH(2) + CO(2), OH + HNCO and H(2)O + NCO seems unlikely due to kinetic hindrance. Moreover, the (3)CH(2) attack at the end-O of NO(2) is a barrier-consumed process, and thus may only be of significance at very high temperatures. The reaction of the singlet CH(2) with NO(2) is also briefly discussed. Our calculated results may assist in future laboratory identification of the products of the title reaction.  相似文献   

13.
We examined why the 1T-VS(2) layer of the layered compound Sr(6)V(9)S(22)O(2) has the x superstructure in terms of electronic band structure calculations and metal-metal bonding across the shared edges of adjacent VS(6) octahedra. On the basis of this analysis we explored how the anomalous magnetic and transport properties of Sr(6)V(9)S(22)O(2) can be explained. Our work shows that the x superstructure is not caused by a charge density wave instability associated with Fermi surface nesting but by the metal-metal bonding through the shared edges of adjacent VS(6) octahedra. The weak and strong electron localizations observed for Sr(6)V(9)S(22)O(2) were discussed in terms of three-center two-electron and two-center two-electron V-V bonds in the 1T-VS(2) layers.  相似文献   

14.
Here we report on a mixed oxide system, gamma-Fe2O3 nanoparticles doped with Mn(III), where the transition from the cubic to the more stable hexagonal alpha-Fe2O3 structure is suppressed. When amorphous Fe2O3 is heated at 300 degrees C for 3 h, ferrimagnetic gamma-Fe2O3 is observed as the sole product. On the other hand, when the temperature is raised to 500 degrees C, one observes only antiferromagnetic alpha-Fe2O3 as the product. However, upon doping with 8.5 wt % Mn(III), the amorphous nanoparticles crystallized to mainly the gamma-Fe2O3 matrix after heating at 500 degrees C for 3 h, and need to be heated to >650 degrees C for the complete transition to the alpha-Fe2O3 structure to take place.  相似文献   

15.
The influence of the Lewis basicity of alkali polysulfide fluxes (A(2)S(x)) (A = alkali) as a function of x on the respective reactivities of Pb and Sn with Ge was studied and found to be strong. Cs(4)Pb(4)Ge(5)S(16), K(2)PbGe(2)S(6), and K(4)Sn(3)Ge(3)S(14) could be prepared only under low basicity with S/A(2)S ratios of > or =11. These compounds display complex frameworks and are semiconductors. Cs(4)Pb(4)Ge(5)S(16) is luminescent with red emission.  相似文献   

16.
A new series of anhydrous mixed alkali-metal borophosphates-Li(2) Cs(2) B(2) P(4) O(15) (1), LiK(2) BP(2) O(8) (2), Li(3) K(2) BP(4) O(14) (3), and Li(3) Rb(2) BP(4) O(14) (4)-have been successfully synthesized by using the conventional solid-state reaction method. Compound 1 contains a novel fundamental building unit (FBU), [B(4) P(8) O(30) ], with B/P=1:2. Compound 2 contains an FBU of [B(2) P(4) O(16) ] with B/P=1:2. Compounds 3 and 4 are isotypic, and they have a [B(P(2) O(7) )(2) ] unit as their FBU. In all four compounds, their FBUs are connected through corner sharing to generate layered anionic partial structures, and then further linked with metallic polyhedra to form three-dimensional (3D) frameworks. Most interestingly, three of the four compounds contain direct P-O-P connections in their structures, which is extremely rare among borophosphates. Thermal analyses, IR spectroscopy, and UV/Vis/near-IR diffuse reflectance spectroscopy have also been performed on the four title compounds.  相似文献   

17.
Kinetic measurements for the forward reaction Fe(CN)54-AmPy3? + Co(edta)? ? Fe(CN)5s4-AmPy2? + Co(edta)2? have been carried out; the rate constant is 2.72 ± 0.07 M?1s?1, at pH = 8, μ = 0.10 M LiClO4, and T = 25°C. The activation parameters of the reaction were also studied with and . The mechanism of the reaction is discussed in the context of the Marcus cross relation for an outer-sphere process.  相似文献   

18.
Both TcO(2)F(3) and ReO(2)F(3) are infinite chain, fluorine-bridged polymers in the solid state. Their solution structures have been studied by (19)F and (99)Tc NMR spectroscopy in SO(2)ClF solution and shown to exhibit cyclic (MO(2)F(3))(3) (M = Tc, Re) and (ReO(2)F(3))(4) structures that have been confirmed by simulation of the (19)F NMR spectra. The trimers dominate in both the technetium and rhenium systems, with both the tetramer and trimer existing in equilibrium in the rhenium system. A low concentration of a higher, possibly pentameric, cyclic rhenium polymorph is also present in equilibrium with the trimer and tetramer.  相似文献   

19.
The reaction between bismuth pentafluoride and excess liquid xenon hexafluoride yields a white diamagnetic solid XeF6.BiF5. On the basis of its Raman and infrared spectra the 1:1 compound could be formulated as XeF5+BiF6-. The Strong fluorine-bridge interaction between cation and anion distorts the anion from Oh symmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号