首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(PPh4)2[MoN(N3)3Cl]2; Synthesis, IR Spectrum, and Crystal Structure The title compound is formed in the reaction of molybdenum (II) benzoate with trimethylsilyl azide and PPh4Cl in dichloro methane forming dark red single crystals. A PPh3Me⊕ salt of the ion [MoN(N3)3Cl]22? is obtained from (PPh3Me)2MoNCl4] treated with silver azide in CH2Cl2 suspension. The solvent CH2Cl2 participates in both reactions as oxidizing agent. (PPh4)2[MoN(N3)3Cl2 is characterized by a structural analysis based upon X-ray data: space group P1 , Z = 1, a = 1050.7 pm; b = 1185.4 pm; c = 1190.8 pm; α = 98.90°; β = 106.87°; γ = 103.97° (4505 independent, observed reflexions, R = 0.039). The compound consists of PPh4⊕ cations and centrosymmetric anions [MoN(N3)3Cl22? in which the molybdenum atoms are bridged by the Nα atoms of two azide groups; the resulting Mo? N bond lengths are 208 pm and 260 pm. In trans position to the long Mo? N bond the terminal nitrido ligand is situated, the Mo?N distance of 164 pm corresponds to a triple bond. Two terminal azido ligands and the chloro ligand are filling up the coordination sphere of the molybdenum atoms to a coordination number of six. The i.r. spectrum is reported and assigned.  相似文献   

2.
Nitrido-Azido-Complexes of Molybdenum(VI). Synthesis and Crystal Structure of [MoN(N3)2(terpy)]+[MoN(N3)4] ? · MoN(N3)3(terpy) (CH3)3SiN3 reacts with Mo(CO)3(terpy) in CH3CN yielding red crystals of [MoN(N3)2(terpy)]+[MoN(N3)4] ?· MoN(N3)3(terpy) (space group P1 , a = 1039.3 pm, b = 1384.6 pm, c = 1685.4 pm, α = 112.4°, β = 108.1°, γ = 88.3°, Z = 2, R = 0.035 for 4376 independent reflections). The structure consists of three different mononuclear complexes. In the neutral complex MoN(N3)3(terpy) Mo exhibits the coordination number 7 in form of a distorted pentagonal bipyramid, with the terpyridine ligand and two azido groups in the equatorial plane. The axial positions are occupied by the nitrido ligand and another azido group. The triply bonded nitrido nitrogen atom (Mo1? N1 = 165.6 pm) causes a strong trans effect resulting in a long distance of 245.7 pm to Nα of the trans bonded azido group. The cationic complex [MoN(N3)2(terpy)]+ derives from MoN(N3)3-(terpy) by abstraction of the trans bonded azido group. For the molybdenum atom remains the coordination number 6 in form of the rarely found pentagonal pyramid. In the anion [MoN(N3)4]? the molybdenum atom exhibits the coordination number 5 in form of a tetragonal pyramid with the nitrido ligand in the apex. The square basic plane is formed by the Nα atoms of the azido groups.  相似文献   

3.
Azido Complexes of Manganese(II) and Cobalt(II). Crystal Structures of (PPh4)2[Mn(N3)4] and PPh42[Co(N3)3Cl] (PPh4)2[Mn(N3)4] and (PPh4)2[Co(N3)3Cl] were obtained as light-brown and green blue, nonexplosive crystalline compounds, respectively. They are only slightly sensitive to moisture and were obtained from the tetrachloro complexes (PPh4)2MCl4 by reactions with silver azide in dichloromethane. The compounds were characterized by thier i.r. spectra and by crystal structure analyses. Both crystallized in the monoclinic space group C2/c, Z = 4, but they are not isotypic. (PPh4)2[Mn(N3)4]: structure determination with 711 independent reflexions, R = 0.097; a = 2249.1, b = 1499.6, c = 1370.3 pm, β = 104.86°. (PPh4)2[Co(N3)Cl]: 2753 reflexions, R = 0.075; a = 1119.7, b = 1899.2, c = 2115.4 pm, β = 90.47°. The structures consist of PPh4+ ions and of anions that are situated on twofold crystallographic rotation axes. The anions show positional disorder, statistically assuming two different orientations with probabilities of 50% each; in the case of [Co(N3)3Cl]2?, the Cl atom is superimposed statistically with an azido group, whereas the [Mn(N3)4]2? ion is tilted by about 20° from the ideal position to two sides of the crystallographic axis. In both compounds the cation form layers and the anions are located between the layers.  相似文献   

4.
Crystal Structures of the Azido Platinates (AsPh4)2[Pt(N3)4] and (AsPh4)2[Pt(N3)6] The crystal structures of the two homoleptic azido platinates (AsPh4)2[Pt(N3)4] ( 1 ) and (AsPh4)2[Pt(N3)6] ( 2 ) were determined by X‐ray diffraction at single crystals. In 1 the [Pt(N3)4]2– ions are without crystallographic site‐symmetry, and the platinum atoms show a planar surrounding. The [Pt(N3)6]2– ions in 2 are centrosymmetric (Ci) with an octahedral surrounding at the platinum atoms. While 1 is highly explosive, 2 is of significantly greater stability. This behaviour is explained by the packing conditions. 1 : Space group P21/n, Z = 6, lattice dimensions at –80 °C: a = 1045.3(1), b = 1620.2(1), c = 4041.0(3) pm; β = 96.70(1)°; R1 = 0.0654. 2 : Space group P1, Z = 1, lattice dimenstions at –80 °C: a = 1027.6(1), b = 1049.1(2), c = 1249.9(3) pm; α = 88.27(1)°, β = 74.13(1)°, γ = 67.90(1)°; R1 = 0.0417.  相似文献   

5.
The Layered Structure of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in an aqueous silica gel. Space group (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms of the pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm; Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4? yields infinite strands, which are linked by pyrazine molecules to form a two‐dimensional coordination polymer. Thermogravimetric analysis in air showed that the dehydrated compound was stable between 175 and 248 °C. Further heating yielded CuO.  相似文献   

6.
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers.  相似文献   

7.
New Phosphido-bridged Multinuclear Complexes of Ag, Cd and Zn. The Crystal Structures of [Ag4(PPh2)4(PMe3)4], [Ag6(PPh2)6(PtBu3)2] and [M4Cl4(PPh2)4(PnPr3)2] (M = Zn, Cd) AgCl reacts with Ph2PSiMe3 in the presence of a tertiary Phosphine PMe3 or PtBu3 to form the multinuclear complexes [Ag4(PPh2)4(PMe3)4] ( 1 ) and [Ag6(PPh2)6(PtBu3)2] ( 2 ). In analogy to that MCl2 reacts with Ph2PSiMe3 in the presence of PnPr3 to form the two multinuclear complexes [M4Cl4(PPh2)4(PnPr3)2] (M = Zn ( 3 ), Cd ( 4 )). The structures were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (Nr. 33), Z = 4, a = 1 313.8(11) pm, b = 1 511.1(6) pm, c = 4 126.0(18) pm, 2 : space group P1 (Nr. 2), Z = 2, a = 1 559.0(4) pm, b = 1 885.9(7) pm, c = 2 112.4(8) pm, α = 104.93(3)°, β = 94.48(3)°, γ = 104.41(3)°; 3 : space group C2/c (Nr. 15), Z = 4, a = 2 228.6(6) pm, b = 1 847.6(6) pm, c = 1 827.3(6) pm, β = 110.86(2); 4 : space group C2/c (Nr. 15), Z = 4, a = 1 894.2(9) pm, b = 1 867.9(7) pm, c = 2 264.8(6) pm, β = 111.77(3)°). 3 and 4 may be considered as intermediates on the route towards polymeric [M(PPh2)2]n (M = Zn, Cd).  相似文献   

8.
Azido Complexes of Zirconium: ZrCl3N3, [ZrCl4N3]22?, [ZrCl4(N3)2]2?; Crystal Structure of (PPh4)2 [ZrCl4N3]2 Highly explosive ZrCl3N3 is formed by the reaction of ZrCl4 with iodine azide in dichloromethane suspension. According to the i.r. spectra, the compound is polymeric by azide and chlorine bridges. Zirconium tetrachloride reacts with one and two moles of tetraphenylphosphonium azide respectively, forming the thermally and mechanically stable complexes (PPh4)2[ZrCl4N3]2 and (PPh4)2[ZrCl4(N3)2]. The crystal structure of (PPh4)2[ZrCl4N3]2 was determined by X-ray methods (1942 reflexions, R = 6.5%). The complex crystallizes in the monoclinic space group P21/n with two formula units per unit cell. The structure consists of tetraphenylphosphonium cations and dimeric anions [ZrCl4N3]22?, in which the Zr atoms are linked by the α-N atoms of the azide groups, forming a centrosymmetric Zr2N2 ring with symmetry D2h. According to the i.r. spectra, the azide groups in the complex (PPh4)2[ZrCl4(N3)2] are covalently bonded at the Zr atom in trans positions.  相似文献   

9.
Thiocomplexes of Molybdenum. Crystal Structure of a Mixed Single Crystal (PPh3Me)2[Mo2Br6(NO)4]/(PPh3Me)2[Mo2Br6S2(NO)2] The reactions of (PPh4)2MoS4 with MoBr4 and MoBr2(NO)2 resp. lead to the binuclear complexes (PPh4)2[S2MoS2MoBr3(SMe2)] and (PPh4)[S2MoS2MoBr2(NO)2], in which the molybdenum atoms are linked by sulfido bridges. The preparation of (PPh3Me)2S6 and (AsPh4)2S7 from Na2S4 and PPh3MeBr, and AsPh4Cl, respectively, in ethanol solution is described. Disulfido briges are a feature of (AsPh4)2[Mo2Br6(S2)2(SMe2)2], which is obtained from MoBr4(SMe2)2 and (AsPh4)2S7. Mixed single crystals containing 2/3 (PPh3Me)2[Mo2Br6(NO)4] and 1/3 (PPh3Me)2[Mo2Br6S2(NO)2] are formed in the reaction of MoBr2(NO)2 with (PPh3Me)2S6, as shown by X-ray single crystal structure determination. The compound crystallizes monoclinic in the space group C2/c (Internat. Tab. Nr. 15) with four formula units per unit cell (2351 independent observed reflexions, Rw = 0.037). The cell parameters are a = 1603 pm, b = 1549 pm, c = 1863 pm; β = 92.2°. The complexes consist of PPh3Me cations and the dimeric anions [Mo2Br6(NO)4]2? and [Mo2Br6S2(NO)2]2? which occur in the ratio 2:1. In these the molybdenum atoms are connected via MoBr2Mo bridges of slightly different lengths (Mo? Br 265 pm and 267 pm) forming a controsymmetric double octahedron. All molybdenum atoms have two terminal bromo ligands with Mo? Br bond lengths of 258 pm and 260 pm; in the [Mo2Br6(NO)4]2? ion each molybdenum has two covalently bonded nitrosyl groups on cis-position with Mo? N bond lengths of 183 pm. In the [Mo2Br6S2(NO)2]2? ion one of the two nitrosyl groups at each metal atom is substituted by a terminal sulfido ligand with a Mo? S bond length of 240 pm. The i.r. spectra are reported.  相似文献   

10.
Inhaltsübersicht. Die Titelverbindung entsteht neben CuN3 · PPh3 bei der Einwirkung von Natriumazid auf CuCl2 und Triphenylphosphan in siedendem Acetonitril bei Anwesenheit von 15-Krone-5 als Lösungsvermittler für NaN3. (Ph3PNPPh3)2[Cu(N3)4] bildet schwarze Kristalle, die wir durch das IR-Spektrum und durch eine röntgenographische Strukturanalyse charakterisiert haben. Raumgruppe Pbca, Z = 4, (4245 beobachtete unabhängige Reflexe, R = 7,2%), Gitter-abmessungen (20°C):a = 1980, 1;b = 1618,8; c = 2014,3 pm. Die Verbindung besteht aus Kationen [Ph3PNPPh3]+ und Anionen [Cu(N3)4]2– der Symmetrie Ci, in denen das Cu-Atom planar von den α-N-Atomen der Azidgruppen mit Cu–N-Abständen von 197,2(4) und 189,5(4) pm umgeben ist. Synthesis and Crystal Structure of (Ph3PNPPh3)2[Cu(N3)4] The title compound is prepared besides CuN3 · PPh3 by the reaction of sodium azide with CuCl2 and PPh3 in boiling acetonitrile in the presence of 15-crown-5. (Ph3PNPPh3)2[Cu(N3)4] forms black crystals, which have been characterized by their IR spectrum as well as by an X-ray structure determination. Space group Pbca, Z = 4 (4245 observed independent reflexions, R = 0.072), lattice dimensions (20°C): A = 1980.1; b = 1618.8; c = 2014.3 pm. The compound consists of Ph3PNPPh3+ cations and anions [Cu(N3)4]2– with symmetry C1, in which the copper atom is planarly surrounded by the four nitrogen atoms of the azide groups with bond lengths Cu–N of 197.2(4) and 189.5(4) pm, respectively.  相似文献   

11.
Mono- and Binuclear Dinitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of (PPh3Me)2[WCl4(NO)2], (PPh3Me)2[MoCl3(NO)2]2, and (PPh3Me)2[WCl3(NO)2]2 The complexes (PPh3Me)2[MCl4(NO)2] (M = Mo, W), and (PPh3Me)2[MCl3(NO)2]2, respectively, are prepared by reactions of the polymeric compounds MCl2(NO)2 with triphenylmethylphosphonium chloride in CH2Cl2, forming green crystals. According to the IR spectra the nitrosyl groups are in cis-position in all cases. The tungsten compounds as well as (PPh3Me)2[MoCl3(NO)2]2 were characterized by structure determinations with X-ray methods. (PPh3Me)2[WCl4(NO)2]: space group C2/c, Z = 4. a = 1874, b = 1046, c = 2263 pm, β = 119.99°. Structure determination with 3492 independent reflexions, R = 0.057. The compound consists of PPh3Me ions, and anions [WCl4(NO)2]2? with the nitrosyl groups in cis-position (symmetry C2v). (PPh3Me)2[WCl3(NO)2]2: Space group C2/c, Z = 4. Structure determination with 2947 independent reflexions, R = 0.059. (PPH3Me)2[MoCl3(NO)2]2: Space group P1 , Z = 1. a = 989, b = 1134, c = 1186 pm; α = 63.25°, β = 80.69°, γ = 69.94°. Structure determination with 3326 independent reflexions, R = 0.046. The compounds consist of PPh3Me ions, and centrosymmetric anions [MCl3(NO)2]22?, in which the metal atoms are associated via MCl2M bridges of slightly different lengths. One of the NO groups is in an axial position, the other one in equatorial position (symmetry C2h).  相似文献   

12.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

13.
Synthesis and Crystal Structure of (PPh4)2[Mo2NCl9]2, a μ-Nitrido Complex with Molybdenum (V) and (VI) The title compound is formed as a by-product in the partial oxidation of Mo2NCl7 with chlorine in POCl3 solution, when the reaction mixture is treated with PPh4Cl. The crystals, which are sensitive to moisture, are black in reflectance and red in transmittance. A more effective synthesis is the direct reaction of PPh4[MoNCl4] with MoCl5 in dichloro methane. (PPh4)2[Mo2NCl9]2 was characterized by the i.r. spectrum and by a structural analysis with X-ray data. The compound crystallizes triclinic in the space group P1 with two formula units per unit cell (9225 independent observed reflexions, R = 0.058). The cell parameters are (20°C): a = 1144 pm, b = 1517 pm, c = 2000 pm, α = 79.8°, β = 80.1°, γ = 72.1°. (PPh4)2[Mo2NCl9]2 consists of PPh4⊕ cations and the anions [Mo2NCl9]222?, which dimerize via chloro bridges with Mo? Cl bons lengths of 243 pm and 287 pm. In the [Mo2NCl9]22? units the molybdenum atoms are linked by MoVI?N? MoV bridges (bond angles 179° and 174°, resp.) with Mo? N bond lengths of 167 pm and 212 pm.  相似文献   

14.
An Octahedral Niobium Cluster containing Six Terminal Azide Groups: The Structure of Rb4[Nb6Br12(N3)6](H2O)2 Six terminal halide ligands of [Nb6Br12Br6]4? can be substituted in solution by azide ions. Single-crystals of Rb4[Nb6Br12(N3)6](H2O)2 were obtained during the evaporation of the water/methanol solvent, and structurally characterized by X-ray methods: Space group P21/c, Z = 2, a = 970.8(5) pm, b = 1525.4(7) pm, c = 1280.0(7) pm, β = 97.15(6)°. The [Nb6Br12(N3)6]4? ions contain six terminal azide groups at the corners of the octahedral niobium cluster (d Nb–N = 227 pm). The [Nb6Br12(N3)6]4? ions are interconnected by Rb+ and H2O. Crystals of Rb4[Nb6Br12(N3)6](H2O)2 are explosive towards heat or mechanic pressure.  相似文献   

15.
New compounds of the general formula A4[Nb6Cl12(NCS)6](H2O)4 (A = K, Rb, NH4) were synthesized from Nb6Cl14 and ASCN in aqueous solutions. X-ray structure refinements were performed on single-crystal data of the three compounds. They are isotypic and crystallize with the space group P1 (Z = 1) and the lattice parameters: a = 877.9(3) pm, b = 1176.6(3) pm, c = 1187.0(3) pm, α = 114.29(1)°, β = 98.96(2)°, γ = 100.91(2)° for K4[Nb6Cl12(NCS)6](H2O)4 ( 1 ); a = 887.6(3) pm, b = 1184.0(4) pm, c = 1195.4(4) pm, α = 114.95(2)°, β = 98.84(2)°, γ = 101.31(2)° for Rb4[Nb6Cl12(NCS)6](H2O)4 ( 2 ) and a = 886.0(4) pm, b = 1181.1(6) pm, c = 1183.9(6) pm, α = 114.49(2)°, β = 99.48(3)°, γ = 101.53(1)° for (NH4)4[Nb6Cl12(NCS)6](H2O)4 ( 3 ). Each centrosymmetric [Nb6Cl12(NCS)6]4? ion of the isotypic compounds contains six terminal thiocyanate groups being bound to the corners of the octahedral niobium cluster through the nitrogen atoms (dNb? N = 221.5(6)–224.3(6) pm, bond angles Nb? N? C 168.6(5)–176.4(6)°). The [Nb6Cl12(NCS)6]4? ions are linked via A? S and A? Cl interactions with the A cations. Half of the cations occur to be disordered along two crystallographic sites.  相似文献   

16.
Syntheses and Crystal Structures of the Polytellurido Complexes (PPh4)4[M2Te12] of Copper(I) and Silver(I) The title compounds have been prepared as black crystal needles by reactions of Na2Te3 with CuCl and AgNO3, respectively, in dimethylformamide in the presence of PPh4Br. With regard to the large cell dimensions the crystal structure determinations were done by an imaging plate instrument. (PPh4)4[Cu2Te12]: Space group P21/n, Z = 6, 51 338 detected reflections, structure determination with 14 177 unique reflections with I > 4σ(I), R = 0.081. Lattice dimensions at ? 50°C: a = 1 704.5, b = 1 694.5, c = 5 044 pm, β = 94.20°. (PPh4)4[Ag2Te12]: Space group P21/n, Z = 6, 80 811 detected reflections, structure determination with 16 092 unique reflections with I > 3σ(I), R = 0.052. Lattice dimensions at ? 50°C: a = 1 703.8, b = 1 722.9, c = 5 123 pm, β = 94.65°. The structures of the isotypic compounds consist of six symmetry independent PPh4+ ions and two symmetry independent anions [M2Te12]4?, in which the metal atoms of two (MTe4)?-fivering fragments are linked by a Te42? chain.  相似文献   

17.
(PPh4)2[OsCl3(NO) (SnCl3)2]; Preparation, I.R. Spectrum, and Crystal Structure (P(C6H5)4)2[OsCl3(NO)(SnCl3)2] yields from the reaction of OsCl3(NO) with PPh4-[SnCl3] in dichloro methane forming red crystals. The complex crystallizes monoclinic in the space group C2/c with four formula units per unit cell. The crystal structure was determined by aid of X-ray diffraction data (2261 independent, observed reflexions, R = 4.9%). The cell parameters are a = 1369, b = 1989, c = 2088 pm, β = 99.54°. The structure consists of tetraphenyl phosphonium cations and [OsCl3(NO)(SnCl3)2]2?-anions. In the anion the osmium is coordinated octahedrally by three chlorine atoms (mean bond length r Os? Cl 238 pm), two SnCl3 groups in transposition to each other (r Os? Sn 265 pm) and the N-atom of the covalently bonded nitrosyl ligand (r Os? N 173 pm). The i.r. spectrum of the anion is reported and assigned.  相似文献   

18.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

19.
New Phosphorus-bridged Transition Metal Complexes The Crystal Structures of [Co4(CO)10(PiPr)2], [Fe3(CO)9(PtBu)(PPh)], [Cp3Fe3(CO)2(PPtBu)· (PtBu)], [(NiPPh3)2(PiPr)6], [(NiPPh3)Ni{(PtBu)3}2], and [Ni8(PtBu)6(PPh3)2] By the reaction of cyclophosphines with transition metal carbonyl-derivatives polynuclear complexes are built, in which the PR-ligands (R = organic group) are bonded in different ways to the metal. Depending on the reaction conditions the following compounds can be characterized: [Co4(CO)10 · (PiPr)2] ( 2 ), [Fe3(CO)9(PtBu)(PPh)] ( 3 ), [Cp3Fe3(CO)2(PPtBu) · (PtBu)] ( 4 ), [(NiPPh3)2(PiPr)6] ( 5 ), [(NiPPh3)Ni{(PtBu)3}2] ( 6 ) and [Ni8(PtBu)6(PPh3)2] ( 7 ). The structures of 2–7 were obtained by X-ray single crystal structure analysis ( 2 : space group Pccn (No. 56), Z = 4, a = 1001,4(2) pm, b = 1375,1(3) pm, c = 1675,5(3) pm; 3 : space group P21 (No. 4), Z = 2, a = 914,3(4) pm, b = 1268,7(4) pm, c = 1028,2(5) pm, β = 101,73(2)°; 4 : space group P1 (No. 2), Z = 2, a = 946,0(5) pm, b = 1074,4(8) pm, c = 1477,7(1,0) pm, α = 107,63(5)°, β = 94,66(5)°, γ = 111,04(5)°; 5 : space group P1 (No. 2), Z = 2, a = 1213,6(2) pm, b = 1275,0(2) pm, c = 2038,8(4) pm, α = 92,810(10)°, β = 102,75(2)°, γ = 93,380(10)°; 6 : space group P1 (No. 2), Z = 2, a = 1157,5(5) pm, b = 1371,9(6) pm, c = 1827,6(10) pm; α = 69,68(3)°, β = 80,79(3)°, γ = 69,36(3)°; 7 : space group P3 (No. 147), Z = 1, a = 1114,1(2) pm, b = 1114,1(2) pm, c = 1709,4(3) pm).  相似文献   

20.
Bromo Complexes of Molybdenum(IV) [MoBr6]2? and [Mo2Br10]2?. Crystal Structure of (PPh3Me)2[MoBr6] · 2 CH2Br2 The bromomolybdates(IV) (PPh3Me)2[MoBr6] · 2 CH2Br2 and (PPh4)2[Mo2Br10] are obtained by reactions of molybdenum tetrabromide with PPh3MeBr and PPh4Br, respectively. They form black-brown, hydrolysis sensitive crystal powders. The crystal structure of (PPh3Me)2[MoBr6] · 2 CH2Br2 was determined by X-ray diffraction (2376 independent observed reflexions, R = 0.082). Crystal data: a = 1024, b = 1131, c = 1179 pm, α = 108.2°, β = 106.8°, γ = 99.0°, space group P1 , Z = 1. The compound consists of PPh3Me+ ions, CH2Br2 molecules and nearly octahedral [MoBr6]2? ions with MoBr bond lengths between 252.7 and 254.0 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号