首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption of Eu(III), an analogue of trivalent actinides (Am, Cm), by amorphous titania as well as different crystalline phases of titania, namely anatase and rutile, have been studied as a function of pH, using 154Eu (half life?=?8.8 yrs, E???=?123,247?keV) as a radiotracer. The objective of this study was to investigate the effect of the crystalline phase of the titania on their sorption behaviour towards the metal ion. Amorphous titania was prepared by organic route and was converted into anatase and rutile by heating at elevated temperatures based on the differential thermal analysis studies. Eu(III) sorption by all forms of titania rises sharply with the pH of the suspension, with the sorption edge shifting to higher value in the order; amorphous?<?anatase?<?rutile. However, the normalization of the sorption data to the surface area of the sorbents resulted in the overlapping of the sorption curves for amorphous and anatase phases, with the data being higher for rutle in the lower pH region, indicating the effect of the crystal phase on sorption behaviour of Eu(III).  相似文献   

2.
Alumina–titania mixed oxide nanocatalysts with molar ratios = 1:0.5, 1:1, 1:2, 1:5 have been synthesized by adopting a hybrid sol–gel route using boehmite sol as the precursor for alumina and titanium isopropoxide as the precursor for titania. The thermal properties, XRD phase analysis, specific surface area, adsorption isotherms and pore size details along with temperature programmed desorption of ammonia are presented. A specific surface area as high as 291 m2/g is observed for 1:5 Al2O3/TiO2 composition calcined at 400 °C, but the same composition when calcined at 1,000 °C, resulted in a surface area of 4 m2/g, while 1:0.5 composition shows a specific surface area of 41 m2/g at 1,000 °C. Temperature programmed desorption (of ammonia) results show more acidic nature for the titania rich mixed oxide compositions. Transmission electron microscopy of low and high titania content samples calcined at 400 °C, shows homogeneous distribution of phases in the nano range. In the mixed oxide, the particle size ranges between 10–20 nm depending on titania content. The detailed porosity data analysis contributes very much in designing alumina–titania mixed oxide nanocatalysts.  相似文献   

3.
Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, nitrogen-doped TiO2 with high hydrogen production by photocatalytic water splitting were prepared by microwave-assisted hydrothermal method using titanium sulfate as precursor in the presence of urea. The nitrogen doped TiO2 prepared in this study was pure anatase phase with a high surface area (372?m2?g?1) and showed a very high hydrogen evolution rate of water splitting reaction under UV light irradiation (4,386?μmol?g?1?h?1) and visible light irradiation (185?μmol?g?1?h?1) which was about 15?times higher than commercial TiO2 (Degussa P25).  相似文献   

4.
Hollow anatase titania (TiO2) spheres were synthesized using fructose and tetrabutyl titanate (Ti(OC4H9)4, TBT) as the precursors via the conventional hard template method. The morphological, structural and thermal properties of the products were characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG‐DTA), Brunauer? Emmett? Teller (BET) surface area analysis and diffuse reflectance ultraviolet visible (DR UV? Vis) spectroscopy. XRD revealed that the hollow TiO2 prepared was in the anatase phase and the BET surface area measured was about 22 m2 g?1. The photocatalytic activity of the synthesized hollow anatase TiO2 in the photodecomposition of chlorpyrifos was 18.67 % higher than that obtained using commercial TiO2.  相似文献   

5.
Nanocrystalline mesoporous titania was synthesized via a combined sol-gel process with surfactant-assisted templating method, treated under various calcination conditions, and evaluated for its photocatalytic activity through photocatalytic hydrogen evolution from an aqueous methanol solution. In this synthetic method, applied surfactant template molecules functioned as both mesopore-forming and gelation-assisting agents. The resulting products were methodically characterized by TG-DTA, XRD, N2 adsorption-desorption, diffuse reflectance UV-Vis spectra, SEM, and TEM analyses. The partial phase transformation from anatase to rutile occurred beyond calcination temperature of 600 °C and anatase-rutile transition kinetics was also investigated. The calcination conditions and crystalline phases existing in the products exerted significant effect on the photocatalytic hydrogen evolution activity. The activity of the synthesized titania treated under appropriate calcination conditions was considerably higher than that of commercial titania powders, Ishihara ST-01 and Degussa P-25. It is clearly seen that the introduction of mesopore into titania photocatalyst substantially improved the photocatalytic performance.  相似文献   

6.
In this work bimodal structured titanium dioxide (TiO2) microsphere has been prepared from commercial TiO2 powder and nano-sized titania gel via sol–gel spray-coating technique. Crystallization and transformation behavior of titania gel were investigated. The results revealed that the crystallization and transformation of anatase particles were substantially affected by the concentration of solvent and calcination temperature. Anatase crystallite size of 10 nm was obtained at mole ratio of solvent/precursor 50/1 and calcination temperature of 450 °C. The prepared nano-sized titania gel was embedded within the core (commercial TiO2, P25) during the spraying process. The prepared TiO2 microsphere was characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), field emission electron microscope (FESEM) and micropore analysis. The photocatalytic activity was monitored by following the degradation of phenol with activity benchmarked against commercial P25 (Degussa). The increase of photocatalytic activity of TiO2 microsphere was attributed to the nano-sized anatase crystallite which has been incorporated into the TiO2 microsphere.  相似文献   

7.
Nanostructured TiO2 crystals were synthesized by gel to crystalline conversion. The crystals obtained were anatase form of titania averaging in 30 nm particles with an intrinsic band gap of 3.1 eV. The photocatalytic behavior was evaluated for the bactericidal effect in water, contaminated with the indicator organism Escherichia coli. The 100% photoinactivation of E. coli was achieved within 60 min with suspended nano-TiO2. The catalytic activity of synthesized nanosample was observed to be 2.6 times more than that of commercial TiO2 sample referred to as Degussa P-25. The photoinactivation of E. coli was tested with irradiation source of different wavelengths to substantiate the influence of particle size and nano crystallinity on electronic band structure. The photoactivity of nano titania enhanced to 1.625 times when the source of irradiation shifted from 360 to 400 nm while Degussa P-25 showed no change.  相似文献   

8.
The research of active and stable electrocatalysts toward liquid‐fuel oxidation reaction is of great significance for the large‐scale commercialization of fuel cells. Although extensive efforts have been devoted to pursuing high‐performance nanocatalysts for fuel cells, both the high cost and sluggish reaction kinetics have been two major drawbacks that limited its commercial development. In this regard, we demonstrated a facile solvothermal method for the syntheses of an advanced class of PtCu nanocatalysts with a unique pentangle‐like shape. By combining the merits of a highly active surface area as well as the synergistic and electronic effects, the as‐prepared pentangle‐like Pt3Cu nanocatalysts showed superior electrocatalytic activity towards ethylene glycol oxidation with a mass and specific activities of 5162.6 mA mg?1 and 9.7 mA cm?2, approximately 5.0 and 5.1 times higher than the commercial Pt/C, respectively. More significantly, the Pt3Cu pentangle also showed excellent long‐term stability with less activity decay and negligible changes in structure after 500 cycles, indicating another class of anode catalysts for fuel cells and beyond.  相似文献   

9.
Fine‐powdered, heterostructured, nanoporous Bi2O3–TiO2 (BTO) was synthesized by a green approach using ultrasonication, with the mole ratio Bi/Ti of 1:1 and calcined at different temperatures. The physical and optical properties of the mixed oxides were investigated. The phase structure, as identified by X‐ray diffraction (XRD), showed the appearance of new phases as a function of the calcination temperature. Morphological examinations indicated the formation of a nanoporous structure with a drastic change in morphology at the calcination temperature of 850°C from a globule to a rod‐shaped structure, which further got transformed to a rocky appearance at 1200°C. Doping with Bi2O3 led to the lowering of the bandgap of TiO2 from 3.25 to 2.5 eV. A BTO nanocatalyst calcined at 450°C exhibited promising photocatalytic activity for the degradation of quinalphos (QP) (92%) after a time interval of 100 min under visible light and at the optimum pH 8. The kinetics of degradation of QP showed that it follows a pseudo‐first‐order path with a rate constant 0.01267 min?1. The synthesized BTO mixed oxide showed profound improvement in photocatalytic activity in the visible region as compared to TiO2.  相似文献   

10.
The effect on titania of doping with lithium and rubidium titania gels has been studied in samples prepared with titanium (IV) tetra-n-butoxide co-gelling with the alkaline metal precursors. Titania and doped titania were characterized by X-Ray diffraction, which showed that the catalysts were nanostructured. In samples calcined at 400°C, the crystallite size of the anatase phase was 17 and 14 nm, and 78 and 38 nm for samples calcined at 600°C, for Li/TiO2 and Rb/TiO2, respectively. The specific surface areas of doped samples (400°C) are lower in Li/TiO2 (90 m2/g) than in Rb/TiO2(125 m2/g). Evaluation of their basic properties has been carried out in the acetone condensation reaction. It was found that the activity strongly depended on the Li and Rb ionic radii.  相似文献   

11.
Pure titania, zirconia, and mixed oxides (3–37 mol.% of ZrO2) are prepared using the sol-gel method and calcined at different temperatures. The calcined samples are characterized by Raman spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption porosimetry. Measurements reveal a thermal stability of the titania anatase phase that slightly increases in the presence of 3–13 mol.% of zirconia. Practically, the titania anatase-rutile phase transformation is hindered during the temperature increase above 700°C. The mixed oxide with 37 mol.% of ZrO2 treated at 550°C shows a new single amorphous phase with a surface area of the nanoparticles double with respect to the other crystalline samples and the formed srilankite structure (at 700°C). The anatase phase is not observed in the sample containing 37 mol.% of ZrO2. The treatment at 700°C causes the formation of the srilankite (Ti0.63Zr0.37Ox) phase.  相似文献   

12.
We used a new synthesis of TiO2 anatase 6 nm nanocrystals prepared at room temperature (Hegazy and Prouzet, 2012 [10]) to explore the influence of different physical-chemical parameters on photocatalysis, and bench-tested the material against two commercial powders made of either pure anatase (Sigma?), or composite anatase–rutile particles (P25 Degussa?). The initial as-synthesised material demonstrates a low photocatalytic activity, which is greatly improved after thermal activation as a result of improved crystallinity without any drastic change in crystal size. The influence of several other parameters was studied, the resulting tests being compared with commercial products. The cumulative improvement provided by these different parameters led finally to a material that exhibits a higher photocatalysis compared to commercial anatase, and similar to the commercial material usually used for reference (P25). This study, which can apply to other titania materials, illustrates how the post-treatment and process adaptation can help to optimise an initial material.  相似文献   

13.
Ag-TiO2, Cu-TiO2 and Ni-TiO2 were prepared by sonication. The interactions of Ti-gel with silver, copper and nickel ions under ultrasound irradiation are very different, although these ions can be dispersed very well in titania. The results of EDXA and XRD analysis indicate that Ti-gel does not react with AgCl and crystallizes unaffectedly to form rutile. M(OH)2 (M = Cu and Ni), on the other hand, favors polycondensation with Ti-gel and affects the crystallization of Ti-gel. CuO favors stabilization of the anatase phase. Ni2+ ions tend to incorporate more easily into titania than Cu2+ ions do when the samples are calcined. TEM, and BET were also used to characterize the samples.  相似文献   

14.
Mesoporous titania has been successfully synthesized by photodegradation removal of cetyltrimethylammonium bromide as the surfactant, after slow hydrolyzation of titanium(IV) isopropoxide. Fourier transform infrared spectra proved that photodegradation has successfully decreased the peak areas of the alkyl groups from the template. The nitrogen adsorption analysis showed that the pore size and the specific surface area of the mesoporous titania were 3.7 nm and 203 m2 g−1, respectively, proving the mesoporosity of the titania obtained with the existence of the interparticle mesoporosity which was confirmed by transmission electron microscopy. Based on X-ray diffraction results, the mesoporous titania obtained was in the form of crystalline anatase phase. Furthermore, results from the diffuse reflectance ultra violet-visible spectra showed that the composition of tetrahedral titanium(IV) was more than the octahedral titanium(IV). When the mesoporous titania obtained was used as a catalyst in the oxidation of styrene, an improvement in the conversion of styrene (38%) was observed when compared to those obtained using Degussa P25 TiO2 (14%) as the catalyst.  相似文献   

15.
We demonstrate practical aerosol-assisted approach to synthesize spherical mesoporous titania particles with high surface areas. Scanning electron microscopy observation of the spray-dried products clearly shows spherical morphology. To remove surfactants and enhance crystallinity, the spray-dried products are calcined under various temperatures. The crystalline structures inside the particles are carefully detected by wide-angle XRD measurements. With increase of the calcination temperatures, anatase crystal growth proceeds and transformation from anatase to rutile is occurred. The effect of various calcination temperatures on the mesostructures is also studied by using N2 adsorption desorption isotherms. The mesoporous titania particles calcined at 350, 400, and 500 °C exhibit type IV isotherms with a capillary condensation step and shows a hysteresis loop, which is a characteristic of mesoporous materials. The reduction in the surface areas and the pore volumes is confirmed by increasing the calcination temperatures, while the average pore diameters are increased gradually. This is attributed to the distortion of the mesostructures due to the grain growth of the anatase phase and the transformation to the rutile phase during the calcination process. As a preliminary experimental photocatalytic activity, oxidative decomposition of acetaldehyde under UV irradiation is examined. The mesoporous titania calcined at 400 °C shows the highest photocatalytic activity, due to both high surface area and well-developed anatase crystalline phase.  相似文献   

16.
TiO2 microspheres were synthesized by the sol–gel method using the ionic liquid (IL) 1-vinyl-3-propylimidazolium iodide (VPIM+I?) as a reaction medium, then calcined at 500 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy, and ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy. The phase of TiO2 microspheres is anatase, and VPIM+I? is able to favor the growth of anatase phase and prevents the collapse of small pores. The photocatalytic activity of TiO2-IL was tested by degradation of 2-nitrophenol under UV light illumination. The photocatalytic activity of TiO2-IL was higher than that of samples prepared in the reaction medium without VPIM+I?.  相似文献   

17.
To enhance the photocatalytic activity under solar light, highly ordered TiO2 nanotube arrays (TNAs) film with anatase phase was fabricated on glass and successfully doped with carbon at various temperatures of 450–550 °C. The characterization results indicate that, after carbon doping, the TNAs still remained nanotubular structure with anatase phase. But their optical response shifted from UV to the visible light region and the recombination of photogenerated carriers was suppressed effectively. It is more important that the carbon-doped TNAs/glass (C-TNAs) samples exhibited high solar light photocatalytic activity, and 68%, 61% and 56% MO was photodegraded in 150 min by the C-TNAs calcined at 550, 500 and 450 °C, respectively. Especially, the apparent reaction rate constant of C-TNAs calcined at 550 (k, 0.065 min−1) with the highest activity is 3.6 times that of pristine anatase TNAs (k, 0.018 min−1). It is clear that carbon doping enhanced the photocatalytic activity under sunlight at optimized annealing temperature. The efficient activity could be attributed to the synergetic effects of strong visible light absorption, good crystallization, large surface, and enhanced separation of photoinduced carriers.  相似文献   

18.
This study was prepared for the first time the trimetallic nanocatalyst Co2-Ni-Mn/SiO2 by thermal decomposition of) [Ni(H2O)5Co(dipic)2].2H2O + [Mn(H2O)5Co(dipic)2] 2H2O)/SiO2, to study the Fischer–Tropsch reaction for conversion of the synthesis gas to light olefins. The catalytic performance of Co2-Ni-Mn/SiO2 as a nanocatalyst prepared by thermal decomposition of an inorganic precursor was compared to that of the trimetallic nanocatalysts Co2-Ni-Mn/SiO2 as reference nanocatalysts prepared by impregnation and co-precipitation. The characterization of precursor and nanocatalyst were confirmed by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) specific surface area, and X-ray diffraction (XRD). The Fischer–Tropsch reaction for all nanocatalysts of Co2-Ni-Mn/SiO2 was studied at 280–360 °C at a gas hourly space velocity of 3600 h?1, and a H2/CO molar ratio of 1:1 at atmospheric pressure. The results showed that the Co2-Ni-Mn/SiO2 nanocatalyst prepared by thermal decomposition of an inorganic complex exhibited the higher activity than the other nanocatalysts and showed maximum selectivity to light olefins at 360 °C.  相似文献   

19.
Mesoporous F-doped TiO2 powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP) in a mixed NH4F-H2O solution. Effects of F ion content and calcination temperatures on the phase composition and porosity of mesoporous titania were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and BET surface areas. The results showed the BET surface area (SBET) of the pure and doped powders dried at 100°C ranged from 260 to 310 m2/g as determined by nitrogen adsorption. With increasing calcination temperatures, the SBET values of the calcined titania powders decreased due to the increase in crystalline size. The pore size distribution was bimodal with fine intra-particle pore and larger inter-particle pore as determined by nitrogen adsorption isotherms. The peak pore diameter of intra-particle pore increases with increasing F ion content. At 700°C, all the titania powders exhibit monomodal pore size distributions due to the complete collapse of the intra-particle pores. The crystallization of anatase was obviously enhanced due to F-doping at 400°C and 500°C. Moreover, with increasing F ion concent, F ions not only suppressed the formation of brookite phase at low temperature, but also prevented phase transition of anatase to rutile at high temperature.  相似文献   

20.
A co-precipitation method was adopted for the immobilization of yttrium radioactive waste over crystalline titania. A high uptake of91Y was observed over the preformed hydrous titania. Weighable quantity of Y was coprecipitated with Ti(IV) hydroxide and a maximum of 38 wt% was found to be adsorbed. Mixed masses were calcined separately at 800 and 1000°C for 20 hours, and soxhlet leach tests at 97°C, repeated 7 times at an interval of 24 hours, showed the release of yttrium in the order of 10–1 and 10–2 g·m–2·d–1, respectively. X-ray powder diffraction analysis revealed that the yttrium was immobilized in the titania crystal lattice which suffered some structural changes with the formation of new mineral phase Y2Ti2O7 which is accompanied by rutile and little quantity of anatase form of titania at 800°C, and only rutile form of titania at 1000°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号