首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Let Ω be a bounded nonconvex polygonal domain in the plane. Consider the initial boundary value problem for the heat equation with homogeneous Dirichlet boundary conditions and semidiscrete and fully discrete approximations of its solution by piecewise linear finite elements in space. The purpose of this paper is to show that known results for the stationary, elliptic, case may be carried over to the time dependent parabolic case. A special feature in a polygonal domain is the presence of singularities in the solutions generated by the corners even when the forcing term is smooth. These cause a reduction of the convergence rate in the finite element method unless refinements are employed.  相似文献   

2.
We study spatially semidiscrete and fully discrete finite volume element approximations of the heat equation with homogeneous Dirichlet boundary conditions in a plane polygonal domain with one reentrant corner. We show that, as a result of the singularity in the solution near the reentrant corner, the convergence rate is reduced from optimal second order, similarly to what was shown for the finite element method in the earlier work 2 . Optimal order convergence may be restored by mesh refinement near the corners of the domain. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

3.
A finite element procedure is presented for the calculation of two-dimensional transient convective/conductive heat transfer in a fluid region. The governing equations are expressed in terms of the primitive variables; the flow is assumed to be laminar, and the fluid incompressible within the Boussinesq approximation. Three typical problems are examined: flow through a sudden enlargement, natural convection in rectangular enclosures, and natural convection between horizontal concentric cylinders. An assessment of the characteristics of the flow regime is made in association with varying dimensionless Prandtl and Rayleigh numbers, as well as cavity aspects ratios. The upper limit for the Rayleigh number in the present paper is 107. Wherever possible, the results are compared with existing solutions obtained by other numerical methods.  相似文献   

4.
We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the domain is polygonal, special attention has to be paid to the limited regularity of the exact solution. We give sufficient conditions in terms of data that yield optimal order error estimates in L2 and H 1 . The convergence rate in the L norm is suboptimal, the same as in the corresponding finite element method, and almost optimal away from the corners. We also briefly consider the lumped mass modification and the backward Euler fully discrete method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

5.
A new mixed finite element for the Stokes equations is considered. This new finite element is based on a mixed formulation of the Stokes problem in which the gradient of the velocity is introduced and the velocity is approximated by the Raviart-Thomas element [1]. Optimal error estimates are derived. The number of degrees of freedom, for this element, is the lowest possible, and the local conservation of the mass is assured. A hybrid version of the mixed method is also considered. Finally, some numerical results for the incompressible Navier-Stokes equations are presented. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The purpose of this article is to study a mixed formulation of the elasticity problem in plane polygonal domains and its numerical approximation. In this mixed formulation the strain tensor is introduced as a new unknown and its symmetry is relaxed by a Lagrange multiplier, which is nothing else than the rotation. Because of the corner points, the displacement field is not regular in general in the vicinity of the vertices but belongs to some weighted Sobolev space. Using this information, appropriate refinement rules are imposed on the family of triangulations in order to recapture optimal error estimates. Moreover, uniform error estimates in the Lamé coefficient λ are obtained for λ large. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 323–339, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10009  相似文献   

7.
8.
Numerical verification methods, so-called Nakao's methods, on existence or uniqueness of solutions to PDEs have been developed by Nakao and his group including the authors. They are based on the error estimation of approximate solutions which are mainly computed by FEM.  相似文献   

9.
A new method to estimate errors of the finite element method (FEM) for nonconvex polygonal domain is proposed. It gives mathematically rigorous upper bounds for the errors using calculations with guaranteed accuracy. Numerical examples are shown and their orders concerning mesh sizes are compared with theoretical orders.  相似文献   

10.
In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite element (SCNMFE) formulation based on two local Gauss integrals and parameterfree with the second-order time accuracy is established directly from the time semi-discrete CN formulation. Thus, it could avoid the discussion for semi-discrete SCNMFE formulation with respect to spatial variables and its theoretical analysis becomes very simple. Finaly, the error estimates of SCNMFE solutions are provided.  相似文献   

11.
The superconvergence for a nonconforming mixed finite element approximation of the Navier–Stokes equations is analyzed in this article. The velocity field is approximated by the constrained nonconforming rotated Q1 (CNRQ1) element, and the pressure is approximated by the piecewise constant functions. Under some regularity assumptions, the superconvergence estimates for both the velocity in broken H1‐norm and the pressure in L2‐norm are obtained. Some numerical examples are presented to demonstrate our theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 646–660, 2016  相似文献   

12.
In this article, we propose a residual based reliable and efficient error estimator for the new dual mixed finite element method of the elasticity problem in a polygonal domain, introduced by M. Farhloul and M. Fortin. With the help of a specific generalized Helmholtz decomposition of the error on the strain tensor and the classical decomposition of the error on the gradient of the displacements, we show that our global error estimator is reliable. Efficiency of our estimator follows by using classical inverse estimates. The lower and upper error bounds obtained are uniform with respect to the Lamé coefficient λ, in particular avoiding locking phenomena. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

13.
We study a new class of finite elements so‐called composite finite elements (CFEs), introduced earlier by Hackbusch and Sauter, Numer. Math., 1997; 75:447‐472, for the approximation of nonlinear parabolic equation in a nonconvex polygonal domain. A two‐scale CFE discretization is used for the space discretizations, where the coarse‐scale grid discretized the domain at an appropriate distance from the boundary and the fine‐scale grid is used to resolve the boundary. A continuous, piecewise linear CFE space is employed for the spatially semidiscrete finite element approximation and the temporal discretizations is based on modified linearized backward Euler scheme. We derive almost optimal‐order convergence in space and optimal order in time for the CFE method in the L(L2) norm. Numerical experiment is carried out for an L‐shaped domain to illustrate our theoretical findings.  相似文献   

14.
Summary A simple mixed finite element method is developed to solve the steady state, incompressible Navier-Stokes equations in a neighborhood of an isolated—but not necessarily unique—solution. Convergence is established under very mild restrictions on the triangulation, and, when the solution is sufficiently smooth, optimal error bounds are obtained.  相似文献   

15.
Two-grid mixed finite element method is proposed based on backward Euler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest equal-order pairs for the velocity and pressure. The space two-grid method is also used to reduce the time consuming. The benefits of this approach are to avoid the higher derivative, but to have more favorable stability, and to get the numerical solution of the two unknown variables simultaneously. Stability analysis and error estimates are given in this work. Finally, the theoretical results are verified by the numerical examples.  相似文献   

16.
We prove the convergence of an adaptive mixed finite element method (AMFEM) for (nonsymmetric) convection-diffusion-reaction equations. The convergence result holds for the cases where convection or reaction is not present in convection- or reaction-dominated problems. A novel technique of analysis is developed by using the superconvergence of the scalar displacement variable instead of the quasi-orthogonality for the stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results.  相似文献   

17.
Summary We study in this paper the convergence of a new mixed finite element approximation of the Navier-Stokes equations. This approximation uses low order Lagrange elements, leads to optimal order of convergence for the velocity and the pressure, and induces an efficient numerical algorithm for the solution of this problem.  相似文献   

18.
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.  相似文献   

19.
In this article, we establish a new mixed finite element procedure to solve the second-order hyperbolic and pseudo-hyperbolic integro-differential equations, in which the mixed element system is symmetric positive definite without requiring the LBB consistency condition. Convergence analysis shows that the method yields the approximate solutions with optimal accuracy in L 2(??) norm for u and in H(?div;??) norm for the flux???. Numerical experiments are given to verify the theoretical results.  相似文献   

20.
In this paper, we study a numerical scheme to solve coupled Maxwell's equations with a nonlinear conductivity. This model plays an important role in the study of type‐II superconductors. The approximation scheme is based on backward Euler discretization in time and mixed conforming finite elements in space. We will prove convergence of this scheme to the unique weak solution of the problem and develop the corresponding error estimates. As a next step, we study the stability of the scheme in the quasi‐static limit ? → 0 and present the corresponding convergence rate. Finally, we support the theory by several numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号