首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new stabilized finite volume method is studied and developed for the stationary Navier-Stokes equations. This method is based on a local Gauss integration technique and uses the lowest equal order finite element pair P 1P 1 (linear functions). Stability and convergence of the optimal order in the H 1-norm for velocity and the L 2-norm for pressure are obtained. A new duality for the Navier-Stokes equations is introduced to establish the convergence of the optimal order in the L 2-norm for velocity. Moreover, superconvergence between the conforming mixed finite element solution and the finite volume solution using the same finite element pair is derived. Numerical results are shown to support the developed convergence theory.  相似文献   

2.
We analyze a finite-element approximation of the stationary incompressible Navier–Stokes equations in primitive variables. This approximation is based on the nonconforming P1/P0 element pair of Crouzeix/Raviart and a special upwind discretization of the convective term. An optimal error estimate in a discrete H1-norm for the velocity and in the L2-norm for the pressure is proved. Some numerical results are presented. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
We consider the spectral semi-Galerkin method applied to the non-homogeneous Navier-Stokes equations, which describes the motion of miscibles fluids. Under certain conditions it is known that the aproximate solutions constructed by using this method converge to a global strong solution of these equations. In this paper we prove that these solutions satisfy an optimal uniform in time error estimate in the H 1-norm for the velocity. We also derive an uniform error estimate in the L -norm for the density and an improved error estimate in the L 2-norm for the velocity.  相似文献   

4.
In this paper, the stabilized mixed finite element methods are presented for the Navier‐Stokes equations with damping. The existence and uniqueness of the weak solutions are proven by use of the Brouwer fixed‐point theorem. Then, optimal error estimates for the H1‐norm and L2‐norm of the velocity and the L2‐norm of the pressure are derived. Moreover, on the basis of the optimal L2‐norm error estimate of the velocity, a stabilized two‐step method is proposed, which is more efficient than the usual stabilized methods. Finally, two numerical examples are implemented to confirm the theoretical analysis.  相似文献   

5.
A finite volume method based on stabilized finite element for the two‐dimensional nonstationary Navier–Stokes equations is investigated in this work. As in stabilized finite element method, macroelement condition is introduced for constructing the local stabilized formulation of the nonstationary Navier–Stokes equations. Moreover, for P1 ? P0 element, the H1 error estimate of optimal order for finite volume solution (uh,ph) is analyzed. And, a uniform H1 error estimate of optimal order for finite volume solution (uh, ph) is also obtained if the uniqueness condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

6.
In this paper, we present a mixed covolume method for parabolic equations on triangular grids. This method use the lowest order Raviart–Thomas (R–T) mixed finite element space as the trial space. We prove the optimal order of convergence for the approximate pressure and velocity in L2-norm. Furthermore, we obtain the quasi-optimal error estimates for the approximate pressure in L-norm.  相似文献   

7.
We present an optimal error estimate of the numerical velocity, pressure, and angular velocity for the fully discrete penalty finite element method of the micropolar equations when the parameters ?, Δ t, and h are sufficiently small. In order to obtain this estimate, we present the time discretization of the penalty micropolar equation that is based on the backward Euler scheme; the spatial discretization of the time discretized penalty micropolar equation is based on a finite elements space pair (X h , M h ) that satisfies some approximations properties.  相似文献   

8.
Numerical methods for incompressible miscible flow in porous media have been studied extensively in the last several decades. In practical applications, the lowest-order Galerkin-mixed method is the most popular one, where the linear Lagrange element is used for the concentration and the lowest order Raviart–Thomas mixed element pair is used for the Darcy velocity and pressure. The existing error estimate of the method in L2 -norm is in the order in spatial direction, which however is not optimal and valid only under certain extra restrictions on both time step and spatial meshes, excluding the most commonly used mesh h = hp = hc . This paper focuses on new and optimal error estimates of a linearized Crank–Nicolson lowest-order Galerkin-mixed finite element method (FEM), where the second-order accuracy for the concentration in both time and spatial directions is established unconditionally. The key to our optimal error analysis is an elliptic quasi-projection. Moreover, we propose a simple one-step recovery technique to obtain a new numerical Darcy velocity and pressure of second-order accuracy. Numerical results for both two and three-dimensional models are provided to confirm our theoretical analysis.  相似文献   

9.
In this paper, a new stabilized finite element method based on two local Gauss integrations is considered for the two-dimensional viscoelastic fluid motion equations, arising from the Oldroyd model for the non-Newtonian fluid flows. This new stabilized method presents attractive features such as being parameter-free, or being defined for non-edge-based data structures. It confirms that the lowest equal-order P 1???P 1 triangle element and Q 1???Q 1 quadrilateral element are compatible. Moreover, the long time stabilities and error estimates for the velocity in H 1-norm and for the pressure in L 2-norm are obtained. Finally, some numerical experiments are performed, which show that the new method is applied to this model successfully and can save lots of computational cost compared with the standard ones.  相似文献   

10.
A priori error estimates in the H1- and L2-norms are established for the finite element method applied to the exterior Helmholtz problem, with modified Dirichlet-to-Neumann (MDtN) boundary condition. The error estimates include the effect of truncation of the MDtN boundary condition as well as that of discretization of the finite element method. The error estimate in the L2-norm is sharper than that obtained by the author [D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math. 200 (1) (2007) 21-31] for the truncated DtN boundary condition.  相似文献   

11.
In this article, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. A priori error estimates of optimal order are derived for velocity and pressure in the energy norm and the L2-norm, respectively. Moreover, a reliable and efficient a posteriori error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix–Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.  相似文献   

12.
In this paper we construct an upwind finite volume element scheme based on the Crouzeix-Raviart nonconforming element for non-selfadjoint elliptic problems. These problems often appear in dealing with flow in porous media. We establish the optimal order H 1-norm error estimate. We also give the uniform convergence under minimal elliptic regularity assumption   相似文献   

13.
We consider a family of fully discrete finite element schemes for solving a viscous wave equation, where the time integration is based on the Newmark method. A rigorous stability analysis based on the energy method is developed. Optimal error estimates in both time and space are obtained. For sufficiently smooth solutions, it is demonstrated that the maximal error in the L 2-norm over a finite time interval converges optimally as O(h p+1 + Δt s ), where p denotes the polynomial degree, s = 1 or 2, h the mesh size, and Δt the time step.  相似文献   

14.
15.
We develop finite volume method using discontinuous bilinear functions on rectangular mesh. This method is analyzed for the Stokes equations. An optimal error estimate for the approximation of velocity is obtained in a mesh‐dependent norm. First order L2‐error estimates are derived for the approximations of both velocity and pressure. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

16.
In this paper, we take the parabolic equation with periodic boundary conditions as a model to present a spectral method with the Fourier approximation in spatial and single/multi-interval Legendre Petrov–Galerkin method in time. For the single interval spectral method in time, we obtain the optimal error estimate in L 2-norm. For the multi-interval spectral method in time, the L 2-optimal error estimate is valid in spatial. Numerical results show the efficiency of the methods.  相似文献   

17.
We derive residual based a posteriori error estimates of the flux in L 2-norm for a general class of mixed methods for elliptic problems. The estimate is applicable to standard mixed methods such as the Raviart–Thomas–Nedelec and Brezzi–Douglas–Marini elements, as well as stabilized methods such as the Galerkin-Least squares method. The element residual in the estimate employs an elementwise computable postprocessed approximation of the displacement which gives optimal order.  相似文献   

18.
In this paper, we propose a robust semi-explicit difference scheme for solving the Kuramoto–Tsuzuki equation with homogeneous boundary conditions. Because the prior estimate in L-norm of the numerical solutions is very hard to obtain directly, the proofs of convergence and stability are difficult for the difference scheme. In this paper, we first prove the second-order convergence in L2-norm of the difference scheme by an induction argument, then obtain the estimate in L-norm of the numerical solutions. Furthermore, based on the estimate in L-norm, we prove that the scheme is also convergent with second order in L-norm. Numerical examples verify the correction of the theoretical analysis.  相似文献   

19.
In this paper we are concerned with a weighted least-squares finite element method for approximating the solution of boundary value problems for 2-D viscous incompressible flows. We consider the generalized Stokes equations with velocity boundary conditions. Introducing the auxiliary variables (stresses) of the velocity gradients and combining the divergence free condition with some compatibility conditions, we can recast the original second-order problem as a Petrovski-type first-order elliptic system (called velocity–stress–pressure formulation) in six equations and six unknowns together with Riemann–Hilbert-type boundary conditions. A weighted least-squares finite element method is proposed for solving this extended first-order problem. The finite element approximations are defined to be the minimizers of a weighted least-squares functional over the finite element subspaces of the H1 product space. With many advantageous features, the analysis also shows that, under suitable assumptions, the method achieves optimal order of convergence both in the L2-norm and in the H1-norm. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the weak Galerkin finite element method (WG-FEM) is applied to a pulsed electric model arising in biological tissue when a biological cell is exposed to an electric field. A fitted WG-FEM is proposed to approximate the voltage of the pulsed electric model across the physical media involving an electric interface (surface membrane), and heterogeneous permittivity and a heterogeneous conductivity. This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes. Optimal pointwise-in-time error estimates in L2-norm and H1-norm are shown to hold for the semidiscrete scheme even if the regularity of the solution is low on the whole domain. Furthermore, a fully discrete approximation based on backward Euler scheme is analyzed and related optimal error estimates are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号