首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two experiments were performed to study the response of a supersonic turbulent boundary layer to successive distortions. In the first experiment (Case 1), the flow passed over a forward-facing ramp formed by 20° compression corner followed by a 20° expansion corner located about 4o downstream, where o is the incoming boundary layer thickness. In the second experiment (Case 2), the forward-facing ramp was constructed of curved compression and expansion surfaces with the same turning angles and total step height as in Case 1. The radii of curvature for the compression and expansion surfaces were equal to 12o. In both experiments, the flow relaxation was observed over a distance equal to 12o. In this relaxation region, the mean and turbulent flow behavior of the boundary layer was measured. The mean velocity profile was found to be altered by the distortion. Recovery of the profile began near the wall and occurred rapidly, but in the outer part of the boundary layer, recovery proceeded slowly. Turbulence measurements revealed a dramatic reduction in the turbulence shear stress and a progressively decaying streamwise Reynolds stress profile.  相似文献   

2.
3.
4.
Rapid Distortion Approximations (RDA) may be used to simplify the Reynolds stress equations in rapidly distorted flows, as suggested by Dussauge and Gaviglio (1987). These approximations neglect diffusive and dissipative terms while retaining the production and pressure terms. The retained terms are then modeled as functions of the Reynolds stress tensor and gradients of the mean flow. The models for the pressure-strain term as developed by Lumley (1978) and Shih and Lumley (1985) are evaluated by comparing the calculated results with experimental data for the case of a Mach 2.84 turbulent boundary layer in a 20° centered expansion. The agreement between computed and experimentally obtained Reynolds stresses was found to be encouraging.Dedicated to Professor J.L. Lumley on the occasion of his 60th birthday.This work was supported by the U.S. Air Force under AFOSR Contract 89-0420. Monitored by Dr. James McMichael.  相似文献   

5.
Zubkov  A. I.  Lyagushin  B. E.  Panov  Yu. A. 《Fluid Dynamics》1991,26(4):624-627
The published information about the interaction of incident shocks and a turbulent boundary layer relate to cases of a thin boundary layer ( 1–3 mm) on a flat surface. The present study relates to supersonic flow with Mach number M = 3 and stagnation pressure p0=1.2 MPa past cones near a surface with a thick boundary layer formed on a plate abutting the lower edge of a plane nozzle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 177–180, July–August, 1991.  相似文献   

6.
7.
This study describes a technique that combines the benefits of focusing schlieren and phase conditioning. Focusing schlieren blurs and drops contrast of non-critical features whereas phase conditioning emphasizes periodic flow features, and their combination produces unique results. The supersonic jets that we studied produced an intense tone referred to as screech. The measured screech tone signal was used as input to the phase conditioning circuit that adjusted the strobing light source to the vertical synchronization pulse of a CCD camera. The sharp video images obtained by this technique could either be frozen or continuously swept through one period of screech to acquire a slow motion video record of the jet unsteadiness. Two cases were visualized in this study: first, an underexpanded jet from a convergent rectangular nozzle at various fully expanded Mach numbers. Second, a supersonic jet emerging from a convergent-divergent rectangular nozzle at a design Mach number of 1.4, artificially excited by impingement tones. The results of this study illustrate the usefulness of this system in visualizing oscillatory flows.The authors would like to thank Dr. Edward J. Rice for his contributions including the design of the impingement obstacles. The efforts of Brentley C. Nowlin (NASA Lewis), and James E. Little (NYMA Inc.) in the design and construction of the strobe trigger mechanism are highly appreciated. We also thank Janet Ivancic (NASA Lewis Photo Lab) for the image enhancement.  相似文献   

8.
An integral method of analyzing turbulent flow behind plane and axisymmetric steps is proposed, which will permit calculation of the pressure distribution, the displacement thickness, the momentum-loss thickness, and the friction in the zone of boundary layer interaction with an external ideal flow. The characteristics of an incompressible turbulent equilibrium boundary layer are used to analyze the flow behind the step, and the parameters of the compressible boundary layer flow are connected with the parameters of the incompressible boundary layer flow by using the Cowles-Crocco transformation.A large number of theoretical and experimental papers devoted to this topic can be mentioned. Let us consider just two [1, 2], which are similar to the method proposed herein, wherein the parameter distribution of the flow of a plane nearby turbulent wake is analyzed. The flow behind the body in these papers is separated into a zone of isobaric flow and a zone of boundary layer interaction with an external ideal flow. The jet boundary layer in the interaction zone is analyzed by the method of integral relations.The flow behind plane and axisymmetric steps is analyzed on the basis of a scheme of boundary layer interaction with an external ideal supersonic stream. The results of the analysis by the method proposed are compared with known experimental data.Notation x, y longitudinal and transverse coordinates - X, Y transformed longitudinal and transverse coordinates - , *, ** boundary layer thickness, displacement thickness, momentum-loss thickness of a boundary layer - , *, ** layer thickness, displacement thickness, momentum-loss thickness of an incompressible boundary layer - u, velocity and density of a compressible boundary layer - U, velocity and density of the incompressible boundary layer - , stream function of the compressible and incompressible boundary layers - , dynamic coefficient of viscosity of the compressible and incompressible boundary layers - r1 radius of the base part of an axisymmetric body - r radius - R transformed radius - M Mach number - friction stress - p pressure - a speed of sound - s enthalpy - v Prandtl-Mayer angle - P Prandtl number - Pt turbulent Prandtl number - r2 radius of the base sting - b step depth - =0 for plane flow - =1 for axisymmetric flow Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 33–40, May–June, 1971.In conclusion, the authors are grateful to M. Ya. Yudelovich and E. N. Bondarev for useful comments and discussions.  相似文献   

9.
Gol'dfel'd  M. A. 《Fluid Dynamics》1985,20(5):728-734
An experimental study is made of the turbulent boundary layer in its interaction with a shock wave, the purpose being to clarify questions connected with the increase in the fullness of the velocity profiles. New systematic data are obtained on the development of the boundary layer, and its structure and asymptotic behavior beyond the interaction region. These results are for axisymmetric flow in the range of Mach numbers M=2–4 and angles of rotation of the flow 10–25°. Conditions of developed separation are included. Extensive information about the general properties of flows with separation has been obtained in a number of studies. A survey of these may be found, for example, in [1, 2]. Certain questions about the separation and reattachment of the boundary layer are clarified. The dimensions of the separation region are determined and its structure studied in detail for various shapes of the surface around which the flow takes place. Nevertheless it has not yet proved possible to reach a complete understanding of this complex phenomenon. Usually plane models have been used for the investigations, but in this case it is evidently impossible to exclude completely the influence of end effects on the flow in the interaction zone. Therefore it is preferable to study such flows in axisymmetric models; this considerably eases the task of analyzing and interpreting the results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 75–82, September–October, 1985.  相似文献   

10.
This study was conducted with financial support from the Russian Fund for Basic Research (Grant No. 94-01-000497).  相似文献   

11.
In the article an attempt is made, within the framework of the Navier-Stokes equations, to describe the field of the instantaneous velocities of a liquid in the region of a turbulent flow near the wall. It is assumed that the velocities of the liquid are determined by the field of the eddies arising in regions of ejections under the action of pressure pulses in the region near the wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 34–40, September–October, 1973.  相似文献   

12.
13.
Measurements of wall shear-stress streaks of a turbulent boundary layer in the channel flow were carried out using a MEMS-based micro-shear-stress imaging chip, which contains about 100 sensors. The chip is designed and fabricated by surface micromachining technology. One arrray of 25 micro-shear-stress sensors in the chip that covers a length of 7.5 mm is used to measure the instantaneous spanwise distribution of the surface shear stress. The statistics of high shear-stress streaks were established. Based on the measurement, the physical quantities associated with the high shear-stress streaks, such as their length, width and peak shear-stress level, were obtained. We found out that a high correlation exists between the peak shear-stress level and front-end shear-stress slope of a high shear-stress streak. This important property is currently being applied to the deisgn of a real-time flow control logic.  相似文献   

14.
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 6, pp. 67–72, November–December, 1992.  相似文献   

15.
16.
The recovery factor on a permeable surface has been experimentally determined at various rates of injection of air into a supersonic turbulent boundary layer. On the basis of an analysis of the solutions of the integral momentum and energy equations for a turbulent boundary layer an expression is obtained for the recovery factor. The recovery factor in the region of a protective gas surface film in a supersonic external flow has been experimentally determined.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 131–136, March–April, 1972.  相似文献   

17.
Most papers on film cooling concern injection of a homogeneous gas. Stollery et al. [1] examined the case of tangential injection of gas into a boundary layer, the specific heat63-01 differing little from that of the main flow,63-02.Here we examine the effectiveness of film cooling of a thermally isolated planar wall by local supply to a turbulent boundary layer.  相似文献   

18.
19.
The results of the author's earlier investigation of the stability of a partially viscous shock layer indicate that any plane-parallel flow may be absolutely unstable if for that flow there exists more than one normal instability mode. This assumption has been confirmed for a supersonic boundary layer at infinitely large Reynolds numbers. Two types of absolute instability, corresponding to two known types of branching of the dispersion relation, have been detected.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 176–179, January–February, 1988.  相似文献   

20.
The interaction of sound with a supersonic boundary layer is considered. Because of the dependence of the main flow on the longitudinal coordinate, a sound wave generates unstable oscillations within the boundary layer. Calculations made for Mach number M = 2.0 and dimensionless frequency 2πfve/Ue 2 = 0.91·10?4 showed that near the lower branch of the curve of neutral stability a Tollmien—Schlichting wave can be excited with an intensity 2–3 times greater than that of the external acoustic wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号