首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.  相似文献   

2.
In this study, the physicochemical properties of several commercial ultrafine TiO2 powders and their behaviour in the as-received form and colloidal suspensions were analysed. Besides the particle size, the morphology and agglomeration state of the dry powders, dispersibility, ζ-potential and sedimentation in water and in phosphate-buffered saline (PBS) were studied. Also, leaching of ions from the powders during ageing in physiological solution and the ability of the photoactivated powders to decompose organic substances were evaluated. The examined TiO2 powders revealed diversified characteristics when dispersed in water. In general, while in dry conditions the particle size appeared in the nano-range (down to 32 nm), the particles were agglomerated in aqueous suspensions at pH ~7 and only a minor amount showed dimensions below 200 nm, but none below 100 nm. The inherent pH of the 3 % suspensions varies from 3.7 to 7.5 and the surface charge at these pH values varied from highly positive to highly negative values. In PBS, the surface charge is negative and relatively low for all the samples, which resulted in agglomeration. Five out of six powders exhibited significant photocatalytic activity when exposed to UV irradiation. This also includes one cosmetic-grade powder. Furthermore, during the immersion in aqueous media at physiological temperature, the powders released foreign ions, which might also contribute to the results of cytotoxicity tests. The results revealed the major role of the particle surface charge and its impact on particle dispersion or agglomeration. Due to the high ionic strength in the liquids relevant for cell-surface interaction tests, for all the examined titania powders the nanoparticulate character was lost. However, the presence of impurities and photocatalysis might further contribute to the results of cytotoxicity tests.  相似文献   

3.
One of the greatest challenges in preparing TiO2-based oxygen electrodes for PEM fuel cells is increasing the electrical catalytic activity of Pt nanoparticle/TiO2 composites by improving the dispersion of Pt. This article describes a new way for improving the dispersion of Pt nanoparticles by depositing them on TiO2 fibers and using microwave irradiation. The Pt nanoparticles used in this experiment is about 5 nm in diameter and the diameter of TiO2 fibers could be controlled ranging from 30 to 60 nm and Pt nanoparticles still keep their size when the deposition amount is increased on the surface of TiO2 fibers. The Pt nanoparticles were highly dispersed without agglomeration even at a weight percentage of composites as high as 40%. The position of Pt nanoparticles located in the fiber and the composition of Pt/TiO2, which had great influence on the electric conductivity and electrical catalytic activity of the composite, could be easily controlled.  相似文献   

4.
Dye-sensitized solar cells (DSSCs) based on a novel composite photoanode of TiO2 nanoparticles coating on electrodeposited ZnO nanotube arrays are fabricated and characterized. An efficiency of 3.94 % is achieved for the composite cell, increasing 86.7 % than 2.11 % of the ZnO nanotubes cell. The short-circuit current (J sc) and open-circuit voltage (V oc) are also enhancing 52.9 % and 25.3 %, respectively. The improvements are because of the high surface area of TiO2 nanoparticles, as well as fast electron transport and light scattering effect of ZnO nanotubes.  相似文献   

5.
Photocatalytic oxidation is used for air purification from low concentrations of organic compounds and microbiological objects. Adsorption is the first stage of photocatalytic oxidation, and adsorption constant value has direct linear influence onto the rate of oxidation at low concentration according to the Langmuir-Hinshelwood equation. The present computational investigation has been undertaken with the goal to estimate the effect of nanoparticle size in the range of 1–1.5 nm, extent of hydroxylation, surface acidity, and nanoparticle shape on adsorption of acetone over TiO2 anatase particle facets, edges, and vertices. The anatase nanoparticles were represented by three cluster models—two of cubic shape and one of decahedral shape with exposed surfaces (001), (100), and (101). Adsorption energy was calculated with density functional tight binding (DFTB) semiempirical method and varied from ? 0.67 to ? 25.79 kcal/mol for different sites of the clusters depending on facet types and location on a facet. Mean unweighted adsorption energy of acetone increased from ? 4.49 to ? 8.16 kcal/mol for (001) facet and from ? 11.05 to ? 12.97 kcal/mol for (100) facet when the cubic cluster size increased from 3 × 3 × 1 to 4 × 4 × 1 elementary cells. For decahedral cluster, mean adsorption energy on (001) facet was ? 9.87 kcal/mol and ? 14.44 kcal/mol on (101) facets. The largest adsorption energy ? 25.60 and ? 25.79 kcal/mol was observed on grove Ti atoms on (100) facet of the largest cubic cluster and vertex atoms in decahedral cluster, respectively. Dissociative adsorption of one and two water molecules on (001) facet increased acetone adsorption energy from ? 4.02 to ? 8.20 and to ? 18.50 kcal/mol. A marked electronic effect on adsorption energy was observed for two adjacent sites on (001) facet with a similar structure but adsorption energy ? 16.40 and ? 1.40 kcal/mol. Influence of acetone adsorption on clusters’ band gap, photogenerated thermalized electron and hole location, and C=O vibration wavenumber is also reported.  相似文献   

6.
Shen  Chen  Yao  Wei  Lu  Yun 《Journal of nanoparticle research》2013,15(10):1-15
Nuclepore filter collection with subsequent electron microscopy analysis for nanosized agglomerates (20–500 nm in mobility diameter) was carried out to examine the feasibility of the method to assess the personal engineered nanoparticle exposure. The number distribution of the nanoparticles collected on the filter surface was obtained by visual counting and converted to the distribution in the air using validated capillary tube models. The model was validated by studying the overall penetrations of nanoparticles (Ag and soot) with different agglomeration degrees through 1 μm pore diameter Nuclepore filters at different face velocities (2–15 cm/s). In the model, the effects of the maximum length of agglomerates on interception deposition and the dynamic shape factor on impaction deposition were taken into account. Results showed that the data of the overall penetration were in very good agreement with the properly applied models. A good agreement of filter surface collection between the validated model and the SEM analysis of this study was obtained, indicating a correct particle number distribution in the air can be converted from the Nuclepore filter surface collection and this method can be applied for quantitative engineered nanoparticle exposure assessment.  相似文献   

7.
This article reports on titanium dioxide (TiO2)-coated nanofibers deposited on a filter surface by the electrospinning process. After depositing a micrometer-thick film of polyamide 11 nanofibers on polypropylene fabric, TiO2 nanoparticles can be directly electrosprayed onto the nanofibers. X-ray diffraction and Raman spectroscopy showed minimal change in the phase composition (anatase and rutile) and no change in the particle size of nanocrystalline TiO2 after coating. Scanning electron microscopy demonstrated that nanofibers were uniformly coated by titanium dioxide nanoparticles without agglomeration. TiO2-coated filters showed excellent photocatalytic-bactericidal activity and photo-induced hydrophilicity.  相似文献   

8.
Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).  相似文献   

9.
In this study, the surface of TiO2 nanoparticles was modified through plasma polymerization, which is a dry coating method at room temperature. The surface morphology of TiO2 nanoparticles was characterized by high-resolution transmission electron microscope (HRTEM). The dispersion behavior of TiO2 nanoparticles in water and ethyl glycol was investigated by laser size distribution and ultraviolet–visible absorption spectrum. TiO2 nanoparticles were coated with a thin film through plasma polymerization, which prevents the agglomeration and improves the dispersion behavior of TiO2 nanoparticles.  相似文献   

10.
Novel titanium oxide (TiO2) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO2 nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ~30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ~63.61 % while those prepared through propanol-induced drying step showed ~69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO2 nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO2 nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.  相似文献   

11.
The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 –100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.  相似文献   

12.
The self-organized titania nanotube arrays (NTAs) fabricated by anodisation has gained enormous interest due to its high spatial orientation, excellent charge transfer structure, and large internal surface area; all are crucial properties influencing the absorption and propagation of light. In this study, a composite material, CdSe nanoparticle/TiO2 nanotube arrays (CdSe/TiO2 NTAs) were assembled through the insertion of CdSe nanoparticles onto the anodized TiO2 nanotube arrays via electrochemical deposition. The annealing temperature of CdSe/TiO2 NTAs was varied from 200 to 350 °C and was found to play an important role in controlling the formation of CdSe nanoparticles on TiO2 NTAs. Characterizations of the films were performed by using field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, high resolution transmission electron microscopes, X-ray diffractometry and UV–visible diffuse reflectance spectroscopy. The transient photocurrent was examined in a three-electrode system under halogen illumination by using the prepared film as the photoanode. It was found that the CdSe nanoparticles were susceptible to spread through electrochemical deposition and formed on the nanotubes by annealing in nitrogen atmosphere. The increment in annealing temperature has resulted in greater amount of CdSe loaded onto TiO2 nanotube arrays. Therefore, a suitable annealing temperature can enhance the particle interaction, leading to considerable improvement in PEC performance. The sensitized CdSe/TiO2 NTAs annealed at 250 °C displayed 84 folds improvement in photoconversion efficiency than that of bare TiO2 NTAs counterparts.  相似文献   

13.
In the past decade, a variety of drug carriers based on mesoporous silica nanoparticles has been extensively reported. However, their biocompatibility still remains debatable, which motivated us to explore the porous nanostructures of other metal oxides, for example titanium dioxide (TiO2), as potential drug delivery vehicles. Herein, we report the in vitro hemolysis, cytotoxicity, and protein binding of TiO2 nanoparticles, synthesized by a sol–gel method. The surface of the TiO2 nanoparticles was modified with hydroxyl, amine, or thiol containing moieties to examine the influence of surface functional groups on the toxicity and protein binding aspects of the nanoparticles. Our study revealed the superior hemocompatibility of pristine, as well as functionalized TiO2 nanoparticles, compared to that of mesoporous silica, the present gold standard. Among the functional groups studied, aminosilane moieties on the TiO2 surface substantially reduced the degree of hemolysis (down to 5%). Further, cytotoxicity studies by MTT assay suggested that surface functional moieties play a crucial role in determining the biocompatibility of the nanoparticles. The presence of NH2– functional groups on the TiO2 nanoparticle surface enhanced the cell viability by almost 28% as compared to its native counterpart (at 100 μg/ml), which was in agreement with the hemolysis assay. Finally, nonspecific protein adsorption on functionalized TiO2 surfaces was examined using human serum albumin and it was found that negatively charged surface moieties, like –OH and –SH, could mitigate protein adsorption to a significant extent.
Graphical abstract ?
  相似文献   

14.
Nano-filled polyurethane coatings were prepared by incorporation of various amounts of untreated and amino propyltrimethoxy silane (APS) treated TiO2 nanoparticles. TEM and AFM techniques were employed to evaluate dispersion of nanoparticles and surface morphology of the coating, respectively. TEM observations revealed that the APS treated nanoparticles have a better dispersion and smaller agglomeration, compared with their untreated counterparts. AFM images revealed that, surface roughness of the coatings increased with increasing of nanoparticles content, however, at equal level of loadings; coatings containing untreated nanoparticles showed a higher surface roughness.Colour changes (colour coordinates data measurements), mechanical properties and surface morphology of the PU nanocomposite coatings, before and after being exposed to a QUV chamber for 1000 h were studied using various techniques. The results revealed that addition of 0.5 to 1.0 wt.% APS treated TiO2 nanoparticles reduces photocatalytic activity, and improves the weathering performance PU nanocomposite coatings. Tensile strength measurements showed significant improvement of mechanical properties of PU coatings containing modified TiO2 nanoparticles. Results also revealed that the colour measurement is a useful technique and non destructive method for evaluation of coating's performance against weathering conditions. The experimental results showed a good correlation between different techniques findings.  相似文献   

15.
Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions’ nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30–150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco’s modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2–NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.  相似文献   

16.
Recently, increasing interest is spent on the synthesis of superparamagnetic iron oxide nanoparticles, followed by their characterization and evaluation of cytotoxicity towards tumorigenic cell lines. In this work, magnetite (Fe3O4) nanoparticles were synthesized by the polyol method and coated with polyethylene glycol (PEG) and glutathione (GSH), leading to the formation of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles. The nanoparticles were characterized by state-of-the-art techniques: dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and superconducting quantum interference device (SQUID) magnetic measurements. PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles have crystallite sizes of 10 and 5 nm, respectively, indicating compression in crystalline lattice upon addition of GSH on the nanoparticle surface. Both nanoparticles presented superparamagnetic behavior at room temperature, and AFM images revealed the regular spherical shape of the nanomaterials and the absence of particle aggregation. The average hydrodynamic sizes of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles were 69 ± 37 and 124 nm ± 75 nm, respectively. The cytotoxicity of both nanoparticles was screened towards human prostatic carcinoma cells (PC-3). The results demonstrated a decrease in PC-3 viability upon treatment with PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles in a concentration-dependent manner. However, the cytotoxicity was not time-dependent. Due to the superparamagnetic behavior of PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles, upon the application of an external magnetic field, those nanoparticles can be guided to the target site yielding local toxic effects to tumor cells with minimal side effects to normal tissues, highlighting the promising uses of iron oxide nanoparticles in biomedical applications.  相似文献   

17.
Iron oxide (α-phase) nanoparticles with coercivity larger than 300 Oe have been fabricated at a mild temperature by an environmentally benign method. The economic sodium chloride has been found to effectively serve as a solid spacer to disperse the iron precursor and to prevent the nanoparticles from agglomeration. Higher ratios of sodium chloride to iron nitrate result in smaller nanoparticles (19 nm for 20:1 and 14 nm for 50:1). The presence of polyvinyl alcohol (PVA) limits the particle growth (15 nm for 20:1 and 13 nm for 50:1) and favors nanoparticle dispersion in polymer matrices. Obvious physicochemical property changes have been observed with PVA attached to the nanoparticle surface. With PVA attached to the nanoparticle surface, the nanoparticles are found not only to increase the PVA cross-linking with an increase in melting temperature but also to enhance the thermal stability of the PVA. The nanoparticles are observed to be uniformly dispersed in the polymer matrix. Scanning electron microscopy (SEM) microstructure also shows an intermediate phase with a strong interaction between the nanoparticles and the polymer matrices, arising from the hydrogen bonding between the PVA and hydroxyl groups on the nanoparticle surface. The addition of nanoparticles favors the cross-linkage of the bulk PVA matrices, resulting in a higher melting temperature, and an enhanced thermal stability of the polymer matrix.  相似文献   

18.
Single-crystal (100) and (001) TiO2 rutile substrates have been implanted with 40 keV Fe+ at room temperature with high doses in the range of (0.5–1.5) × 1017 ions/cm2. A ferromagnetic resonance (FMR) signal has been observed for all samples with the intensity and the out-of-plane anisotropy increasing with the implantation dose. The FMR signal has been related to the formation of a percolated metal layer consisting of close-packed iron nanoparticles in the implanted region of TiO2 substrate. Electron spin resonance (ESR) signal of paramagnetic Fe3+ ions substituting Ti4+ positions in the TiO2 rutile structure has been also observed. The dependences of FMR resonance fields on the DC magnetic field orientation reveal a strong in-plane anisotropy for both (100) and (001) substrate planes. An origin of the in-plane anisotropy of FMR signal is attributed to the textured growth of the iron nanoparticles. As result of the nanoparticle growth aligned with respect to the structure of the rutile host, the in-plane magnetic anisotropy of the samples reflects the symmetry of the crystal structure of the TiO2 substrates. Crystallographic directions of the preferential growth of iron nanoparticles have been determined by computer modeling of anisotropic ESR signal of substitutional Fe3+ ions.  相似文献   

19.
In our experiment, K-P36 precision numerical control surface grinder was used for dry grinding, minimum quantity lubrication (MQL) grinding, nanoparticle jet MQL grinding, and traditional flood grinding of hardened 45 steel. A three-dimensional dynamometer was used to measure grinding force in the experiment. In this research, experiments were conducted to measure and calculate specific tangential grinding force, frictional coefficient, and specific grinding energy, thus verifying the lubrication performance of nanoparticles in surface grinding. Findings present that compared with dry grinding, the specific tangential grinding force of MQL grinding, nanoparticle jet MQL grinding, and flood grinding decreased by 45.88, 62.34, and 69.33 %, respectively. Their frictional coefficient was reduced by 11.22, 29.21, and 32.18 %, and the specific grinding energy declined by 45.89, 62.34, and 69.45 %, respectively. Nanoparticle jet MQL presented ideal lubrication effectiveness, which was attributed to the friction oil film with strong antifriction and anti-wear features formed by nanoparticles on the grinding wheel/workpiece interface. Moreover, lubricating properties of nanoparticles of the same size (50 nm) but different types were verified through experimentation. In our experiment, ZrO2 nanoparticles, polycrystal diamond (PCD) nanoparticles, and MoS2 nanoparticles were used in the comparison of nanoparticle jet MQL grinding. The experimental results manifest that MoS2 nanoparticles exhibited the optimal lubricating effectiveness, followed by PCD nanoparticles. Our research also integrated the properties of different nanoparticles to analyze the lubrication mechanisms of different nanoparticles. The experiment further verified the impact of nanoparticle concentration on the effectiveness of nanoparticle jet MQL in grinding. The experimental results demonstrate that when the nanoparticle mass fraction was 6 %, the minimum specific tangential grinding force, frictional coefficient, and specific grinding energy were 1.285 N/mm, 0.382, and 57.825 J/mm3, respectively. When nanoparticle mass fraction was smaller than 6 %, lubrication effects of nanoparticle jet MQL increased with the rising nanoparticle mass fraction. When nanoparticle mass fraction was larger than 6 %, lubrication effects of nanoparticle jet MQL decreased with the rising nanoparticle mass fraction.  相似文献   

20.
A sensor for the highly sensitive determination of Sudan I based on the amplified electrochemical response of mesoporous TiO2-decorated graphene (GN–TiO2) was fabricated. The nanoparticles of TiO2 arrayed densely and uniformly on the GN sheets, as confirmed by field emission scanning electron microscopy and transmission electron microscopy images. The electrochemical behavior of Sudan I at this sensor was studied in detail, showing that this sensor exhibited electrocatalytic activity for the oxidation of Sudan I because of the significant peak current enhancement and the lowering of oxidation overpotential. Furthermore, the experimental parameters including supporting electrolyte, volume of GN–TiO2 suspension on electrode surface, accumulation potential, and time were optimized and the electrochemical reaction mechanism of Sudan I on this sensor was investigated. The linear range is from 3.3 nM to 0.66 μM, and the limit of detection is estimated to be 0.60 nM. At last, the sensor was used to determine Sudan I in food sample extracts, which are in good agreement with the results obtained by chromatographic method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号