首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mixed‐valence polyoxovanadates(IV/V) have emerged as one of the most intricate class of supramolecular all‐inorganic host species, able to encapsulate a wide variety of smaller guest templates during their self‐assembly formation process. As showcased herein, the incorporation of guests, though governed solely by ultra‐weak electrostatic and van der Waals interactions, can cause drastic effects on the electronic and magnetic characteristics of the shell complex of the polyoxovanadate. We address the question of methodology for the magnetochemical analysis of virtually isostructural {VIV/V22O54}‐type polyoxoanions of D2d symmetry enclosing diamagnetic VO2F2? (C2v), SCN? (C∞v), or ClO4? (Td) template anions. These induce different polarization effects related to differences in their geometric structures, symmetry, ion radii, and valence shells, eventually resulting in a supramolecular modulation of magnetic exchange between the V(3d) electrons that are partly delocalized over the {V22O54} shells. We also include the synthesis and characterization of the novel [VVO2F2@HVIV8VV14O54]6? system that comprises the rarely encountered discrete difluorovanadate anion as a quasi‐isolated guest species.  相似文献   

2.
3.
4.
The scaffold geometries, stability and magnetic features of the (pyridine‐2‐yl)methanolate (L) supported wheel‐shaped transition‐metal complexes with compositions [M6L12] ( 1 ), [Na?(ML2)6]+ ( 2 ), and [M′?(ML2)6]2+ ( 3 ), in which M=CoII, NiII, CuII, and ZnII were investigated with density functional theory (DFT). The goals of this study are manifold: 1) To advance understanding of the magnetism in the synthesized compounds [Na?(ML2)6]+ and [M′?(ML2)6]2+ that were described in Angew. Chem. Int. Ed.­ 2010 , 49, 4443 ( I ‐{Na?Ni6}, I ‐{Ni′?Ni6}) and Dalton Trans.­ 2011 , 40, 10526 ( II ‐{Na?Co6}, II ‐{Co′?Co6}); 2) To disclose how the structural, electronic, and magnetic characteristics of 1 , 2 , and 3 change upon varying MII from d7 (Co2+) to d10 (Zn2+); 3) To estimate the influence of the Na+ and M′2+ ions (XQ+) occupying the central voids of 2 and 3 on the external and internal magnetic coupling interactions in these spin structures; 4) To assess the relative structural and electrochemical stabilities of 1 , 2 , and 3 . In particular, we focus here on the net spin polarization, the determination of the strength and the sign of the exchange coupling energies, the rationalization of the nature of the magnetic coupling, and the ground‐state structures of 1 , 2 , and 3 . Our study combines the broken symmetry DFT approach and the model Hamiltonian methodology implemented in the computational framework CONDON 2.0 for the modeling of molecular spin structures, to interpret magnetic susceptibility measurements of I ‐{Na?Ni6} and I ‐{Ni′?Ni6}. We illustrate that whereas the structures, stability and magnetism of 1 , 2 , and 3 are indeed influenced by the nature of 3d transition‐metals in the {M6} rims, the XQ+ ions in the inner cavities of 2 and 3 impact these properties to an even larger degree. As exemplified by I ‐{Ni′?Ni6}, such heptanuclear complexes exhibit ground‐state multiplets that cannot be described by simplistic model of spin‐up and spin‐down metal centers. Furthermore, we assess how future low‐temperature susceptibility measurements at high magnetic fields can augment the investigation of compound 3 with M=Co, Ni.  相似文献   

5.
6.
7.
8.
9.
10.
Several bis‐triazolium‐based receptors have been synthesized and their anion‐recognition capabilities have been studied. The central chiral 1,1′‐bi‐2‐naphthol (BINOL) core features either two aryl or ferrocenyl end‐capped side arms with central halogen‐ or hydrogen‐bonding triazolium receptors. NMR spectroscopic data indicate the simultaneous occurrence of several charge‐assisted aliphatic and heteroaromatic C?H noncovalent interactions and combinations of C?H hydrogen and halogen bonding. The receptors are able to selectively interact with HP2O73?, H2PO4?, and SO42? anions, and the value of the association constant follows the sequence: HP2O73?>SO42?>H2PO4?. The ferrocenyl end‐capped 72+?2 BF4 ? receptor allows recognition and differentiation of H2PO4? and HP2O73? anions by using different channels: H2PO4? is selectively detected through absorption and emission methods and HP2O73? by using electrochemical techniques. Significant structural results are the observation of an anion???anion interaction in the solid state (2:2 complex, 62+? [ H2P2O7 ] 2? ), and a short C?I???O contact is observed in the structure of the complex [ 8 2+][SO4]0.5[BF4].  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Pentacyclic triterpenoids, a class of naturally bioactive products having multiple functional groups, unique chiral centers, rigid skeletons, and good biocompatibility, are ideal building blocks for fabricating versatile supramolecular structures. In this research, the natural pentacyclic triterpenoid glycyrrhetinic acid (GA) was used as a guest molecule for β‐cyclodextrin (β‐CD) to form a GA/β‐CD (1:1) inclusion complex. By means of GA and β‐CD pendant groups in N,N′‐dimethylacrylamide copolymers, a supramolecular polymer hydrogel can be physically cross‐linked by host–guest interactions between GA and β‐CD moieties. Moreover, self‐healing of this hydrogel was observed and confirmed by step‐strain rheological measurements, whereby the maximum storage modulus occurred at a [GA]/[β‐CD] molar ratio of 1:1. Additionally, these polymers displayed outstanding biocompatibility. The introduction of a natural pentacyclic triterpenoid into a hydrogel system not only provides a biocompatible guest–host complementary GA/β‐CD pair, but also makes this hydrogel an attractive candidate for tissue engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号