首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inspiration for molecular design and construction can be derived from mathematically based structures. In the quest for new materials, the adaptation of new building blocks can lead to unexpected results. Towards these ends, the quantitative single‐step self‐assembly of a shape‐persistent, Archimedean‐based building block, which generates the largest molecular sphere (a cuboctahedron) that has been unequivocally characterized by synchrotron X‐ray analysis, is described. The unique properties of this new construct give rise to a dilution‐based transformation into two identical spheres (octahedra) each possessing one half of the molecular weight of the parent structure; concentration of this octahedron reconstitutes the original cuboctahedron. These chemical phenomena are reminiscent of biological fission and fusion processes. The large 6 nm cage structure was further analyzed by 1D and 2D NMR spectroscopy, mass spectrometry, and collision cross‐section analysis. New routes to molecular encapsulation can be envisioned.  相似文献   

2.
The synthesis of four shape‐persistent macrocycles with three 1,8‐diazaanthracene units each is reported ( 2 , 3 a – 3 c ). For two of them single crystals could be obtained and the structures in the crystal be solved. The structures reveal that macrocycle 2 self‐dimerizes in the solid state; surprisingly it also forms a stable dimer in solution. The reason for this is seen in unusually efficient dispersion interactions as a consequence of the large contact areas in the dimer. All macrocycles are assessed as to their applicability in lateral polymerizations in the single crystal as well as in solution.  相似文献   

3.
4.
A hydrogen‐bonded cyclic tetramer is assembled with remarkably high effective molarities from a properly designed dinucleoside monomer. This self‐assembled species exhibits an impressive thermodynamic and kinetic stability and is formed with high fidelities within a broad concentration range.  相似文献   

5.
6.
Multicomponent network formation by using a shape‐persistent macrocycle ( MC6 ) at the interface between an organic liquid and Au(111) surface is demonstrated. MC6 serves as a versatile building block that can be coadsorbed with a variety of organic molecules based on different types of noncovalent interactions at the liquid–solid interface. Scanning tunneling microscopy (STM) reveals the formation of crystalline bicomponent networks upon codeposition of MC6 with aromatic molecules, such as fullerene (C60) and coronene. Tetracyanoquinodimethane, on the other hand, was found to induce disorder into the MC6 networks by adsorbing on the rim of the macrocycle. Immobilization of MC6 itself was studied in two different noncovalently assembled host networks. MC6 assumed a rather passive role as a guest and simply occupied the host cavities in one network, whereas it induced a structural transition in the other. Finally, the central cavity of MC6 was used to capture C60 in a complex three‐component system. Precise immobilization of organic molecules at discrete locations within multicomponent networks, as demonstrated here, constitutes an important step towards bottom‐up fabrication of functional surface‐based nanostructures.  相似文献   

7.
We present an approach that makes use of DNA base pairing to produce hydrogen‐bonded macrocycles whose supramolecular structure can be transferred from solution to a solid substrate. A hierarchical assembly process ultimately leads to two‐dimensional nanostructured porous networks that are able to host size‐complementary guests.  相似文献   

8.
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH‐triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene‐b‐poly(2‐vinylpyridine) (PS‐b‐P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross‐linking the P2VP domains, thereby connecting glassy PS discs with pH‐sensitive hydrogel actuators.  相似文献   

9.
The article discusses the development and properties of supramolecular polymers based on quadruple hydrogen bonds between self‐complementary ureidotriazine (UTr) and ureidopyrimidinone (UPy) functional groups. The high association constant with which these groups dimerize leads to polymers with a high degree of polymerization in isotropic solution. Application of these units for the functionalization of telechelic polymers results in new materials with mechanical properties approaching those of covalent polymers, but with a much stronger temperature‐dependent behavior. Solvophobic interactions between the hydrogen bonding moieties may be used to obtain supramolecular polymers with a well defined helical columnar architecture. Another consequence of the high dimerization constant of the UPy group is the phenomenon of a critical concentration in solutions of many bifunctional monomers. Below this concentration, only cycles are present, while above the critical concentration, the amount of cycles remains constant, and a polymer is formed. Conformational properties of the linker units are used to control the equilibrium between polymers and cycles, and are proposed to form a promising strategy toward tunable materials.

Supramolecular polymer material with elastomeric properties resulting from functionalization with UPy groups. (Reproduced with permission. © John Wiley & Sons, Inc.)  相似文献   


10.
The hydrogen‐bond‐guided self‐assembly of 5′‐ribonucleotides bearing adenine(A), cytosine (C), uracil (U), or guanine (G) bases from aqueous solution on a lipid‐like surface decorated with synthetic bis(ZnII–cyclen) (cyclen=1,4,7,10‐tetraazacyclodododecane) metal–complex receptor sites is described. The process was studied by using surface plasmon resonance spectroscopy. The data show that the mechanism of nucleotide binding to the 2D template is influenced by the chemistry of the bases and the pH value of the solution. In a neutral solution of pH 7.5, the process is cooperative and selective with respect to Watson–Crick pairs (A–U and C–G), which form stable double planes in accordance with the Chargaff rule. In a more acidic solution at pH 6.0, the interactions between complementary partners become non‐cooperative and the surface also stabilizes mismatched and wobble pairs due to the pH‐induced changes in the receptor coordination state. The results suggest that hydrogen bonding plays a key role in the self‐assembly of complementary nucleotides at the lipid‐like interface, and the cooperative character of the process stems from the ideal matching of the orientation and chemistry of all the interacting components with respect to each other in neutral solution.  相似文献   

11.
12.
Self‐assembly of melem C6N7(NH2)3 in hot aqueous solution leads to the formation of hydrogen‐bonded, hexagonal rosettes of melem units surrounding infinite channels with a diameter of 8.9 Å. The channels are filled with strongly disordered water molecules, which are bound to the melem network through hydrogen bonds. Single‐crystals of melem hydrate C6N7(NH2)3 ? xH2O (x≈2.3) were obtained by hydrothermal treatment of melem at 200 °C and the crystal structure (R $\bar 3$ c, a=2879.0(4), c=664.01(13) pm, V=4766.4(13)×106 pm3, Z=18) was elucidated by single‐crystal X‐ray diffraction. With respect to the structural similarity to the well‐known adduct between melamine and cyanuric acid, the composition of the obtained product was further analyzed by solid‐state NMR spectroscopy. Hydrolysis of melem to cyameluric acid during syntheses at elevated temperatures could thus be ruled out. DTA/TG studies revealed that, during heating of melem hydrate, water molecules can be removed from the channels of the structure to a large extent. The solvent‐free framework is stable up to 430 °C without transforming into the denser structure of anhydrous melem. Dehydrated melem hydrate was further characterized by solid‐state NMR spectroscopy, powder X‐ray diffraction, and sorption measurements to investigate structural changes induced by the removal of water from the channels. During dehydration, the hexagonal, layered arrangement of melem units is maintained whereas the formation of additional hydrogen bonds between melem entities requires the stacking mode of hexagonal layers to be altered. It is assumed that layers are shifted perpendicular to the direction of the channels, thereby making them inaccessible for guest molecules.  相似文献   

13.
Shape-persistent arylene ethynylene macrocycles have attracted much attention in supramolecular chemistry and materials science because of their unique structures and novel properties. In this Review we describe recent examples of macrocycle synthesis by cross-coupling (Sonogashira: aryl acetylene macrocycle or Glaser: aryl diacetylene macrocycle) and dynamic covalent chemistry. The primary disadvantage of the coupling methods is the kinetically determined product distribution, since a significant portion of oligomers grow beyond the length of the cyclic targets ("overshooting"). Better results have been obtained recently by a dynamic covalent approach involving reversible metathesis reactions that afford macrocycles in one step. Mechanistic studies demonstrate that macrocycle formation is thermodynamically controlled by this route. Remaining synthetic challenges include the efficient preparation of site-specifically functionalized structures and larger, more complex two- and three-dimensional molecules.  相似文献   

14.
One area of supramolecular chemistry involves the synthesis of discrete three‐dimensional molecules or supramolecular aggregates through the coordination of metals. This field also concerns the chemistry of supramolecular cage compounds constructed through the use of such coordination bonds. To date, there exists a broad variety of supramolecular cage compounds; however, analogous organic cage compounds formed with only covalent bonds are relatively rare. Recent progress in this field can be attributed to important advances, not least the application of dynamic covalent chemistry. This concept makes it possible to start from readily available precursors, and in general allows the synthesis of cage compounds in fewer steps and usually higher yields.  相似文献   

15.
Confined in a molecular corral : A supramolecular network changes the mechanism by which underpotential deposition (UPD) of copper proceeds on a gold electrode modified by a self‐assembled monolayer (SAM). Lateral diffusion of Cu adatoms is suppressed between adjacent cells of a network/SAM hybrid structure. Instead, UPD occurs by direct deposition into the SAM filled pores of the network, where the Cu adatoms are confined.

  相似文献   


16.
The strategy of chirality‐assisted synthesis, which makes use of enantiomerically pure building blocks that are designed to associate in a single geometric orientation, was applied to synthesize an octameric hydrogen‐bonded capsule with a cavity volume of 2300 Å3. This cube‐shaped capsule forms even host–guest complexes with tetraalkylammonium ions, and accommodates the large tetrahexadecylammonium cation in its cavity. The use of an enantiopure building block was shown to be highly beneficial for capsule formation, whereas its racemate also generates a large amount of ill‐defined aggregates in solution and crystallizes as a hydrogen‐bonded network.  相似文献   

17.
We report a template‐free strategy based on steric repulsion for the isolation of discrete columnar aggregates of macrocycles. Specifically, introduction of sterically‐demanding trityl‐derived substituents at the periphery of Pt4 Schiff base macrocycles limits the otherwise infinite one‐dimensional columnar aggregation to discrete tetrameric and hexameric assemblies. Single crystal X‐ray diffraction studies of these compounds reveal discrete nanotubes of finite length that pack inefficiently resulting in three‐dimensional networks of interconnected void space. The discrete assemblies were studied by N2 adsorption and show enhanced surface area when stacked. In the absence of bulky substituents the macrocycles are nonporous. This strategy for engineering discrete supramolecular macrocyclic aggregates may be generalized to other columnar assembling systems.  相似文献   

18.
19.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   

20.
The directional bonding approach is a powerful tool to rationally control both shape and stoichiometry of three‐dimensional objects built from rigid building blocks under dynamic covalent conditions. Co‐condensation of catechol‐functionalized tribenzotriquinacene derivatives which have 90° angles between the reactive sites and diboronic acids with bite angles of 60°, 120°, and 180°, led to the efficient formation of, respectively, bipyramidal, tetrahedral, or cubic covalent organic cage compounds in a predictable manner. Investigations on the self‐sorting of ternary mixtures containing two competitive boronic acids revealed either narcissistic or social self‐sorting depending on the stability of the segregated cages relative to feasible three‐component assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号