Summary: The copper‐catalyzed Huisgen reaction as a typical example of click chemistry was realized with the polysaccharide cellulose for the first time. The generality, selectivity, and the efficiency of click chemistry perfectly fit the requirements of polysaccharide modification, which is demonstrated by the introduction of triazole‐spacer bound functional groups, i.e., carboxylic ester, thiophene, and aniline moieties. Azide moieties introduced into cellulose via the tosyl derivative were simply transferred with ethynyl compounds under Cu(I) catalysis and mild and easily applicable conditions. Hydrolytically stable cellulose derivatives soluble in organic solvents, e.g., DMSO or DMF with DS up to 0.9 are obtained. The triazole substituted cellulose derivatives were characterized by elemental analysis, FTIR, 1H NMR, and 13C NMR spectroscopies and show no impurities or substructures resulting from side reactions.
New hybrid organic–inorganic dyes based on an azide‐functionalized cubic octasilsesquioxane (POSS) as the inorganic part and a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BDP) chromophore as the organic component have been synthesized by copper(I)‐catalyzed 1,3‐dipolar cycloaddition of azides to alkynes. We have studied the effects of the linkage group of BDP to the POSS unit and the degree of functionalization of this inorganic core on the ensuing optical properties by comparison with model dyes. The high fluorescence of the BDP dye is preserved in spite of the linked chain at its meso position, even after attaching one BDP moiety to the POSS core. The laser action of the new dyes has been analyzed under transversal pumping at 532 nm in both the liquid phase and when incorporated into solid polymeric matrices. The monosubstituted new hybrid dye exhibits high lasing efficiency of up to 56 % with high photostability, with its laser output remaining at the initial value after 4×105 pump pulses in the same position of the sample at a repetition rate of 30 Hz. However, functionalization of the POSS core with eight fluorophores leads to dye aggregation, as quantum mechanical simulation has revealed, worsening the optical properties and extinguishing the laser action. The new hybrid systems based on dye‐linked POSS nanoparticles open up the possibility of using these new photonic materials as alternative sources for optoelectronic devices, competing with dendronized or grafted polymers. 相似文献
A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low‐energy conformers of dehydroquinidine reveals the existence of families of pseudo‐conformers, the structures of which differ mostly in the orientation of a single O?H bond. The pseudo‐conformers in a family are separated by very small energy barriers (i.e., 1.0 kcal mol?1 or smaller) and have very different VCD spectra. First, we demonstrate the unreliable character of the Boltzmann factors predicted with DFT. Then, we show that the large differences observed between the VCD spectra of the pseudo‐conformers in a family are caused by large‐amplitude motions involving the O?H bond, which trigger the appearance/disappearance of strong VCD exciton‐coupling bands in the fingerprint region. This interplay between exciton coupling and large‐amplitude‐motion phenomena demonstrates that when dealing with flexible molecules with polar bonds, vibrational averaging of VCD spectra should not be neglected. In this regard, the dehydroquinidine molecule considered here is expected to be a typical example and not the exception to the rule. 相似文献
The concept of chelation‐assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)‐catalyzed azide–alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper‐chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements. 相似文献
Tetrakis(triazolylmethyl)ethylenediamine, which is a class of tetrakis(2‐pyridylmethyl)ethylenediamine (TPEN) analogue, is synthesized by a quadruple click reaction of tetrapropargylated ethylenediamine and four equivalents of alkyl azide. The obtained compound efficiently extracted the soft metal cadmium(II) ions by solvent extraction. It is also found that an N‐isopropylacryl amide (NIPA) gel using the triazole ethylenediamine as a cross‐linker exhibits a temperature‐dependent extraction performance. 相似文献
A novel photocontrolled thiol click chemistry based on spirothiopyran and maleimide is reported. Upon irradiation with λ=365 nm light, the spirothiopyran can isomerize to the open merocyanine form, a thiophenolate group, which can rapidly react with maleimide. The unreacted MC will readily isomerize back to the starting spirothiopyran, which can be repeatedly photoactivated as needed. Thus, this reversible photoactivated thiol confers spatiotemporal sequential control on the thiol–maleimide reaction using only one type of photochemical reaction. Polymer post‐functionalization and hydrogel building with subsequent multipatterning using different maleimide molecules in a temporal sequential manner indicate that this photocontrolled Michael addition reaction can modulate the specific chemical events in a sequence. 相似文献
Paramagnetic effects provide unique information about the structure and dynamics of biomolecules. We developed a method in which the lanthanoid tag is not directly attached to the protein of interest, but instead to a “reporter” protein, which binds and then transmits paramagnetic information to the target. The designed method allows access to a large number of paramagnetic restraints and residual dipolar couplings produced from independent molecular alignments in high‐molecular‐weight proteins with unknown 3D structure 相似文献
Dinuclear alkynylcopper(I) ladderane complexes are prepared by a robust and simple protocol involving the reduction of Cu2(OH)3OAc or Cu(OAc)2 by easily oxidised alcohols in the presence of terminal alkynes; they function as efficient catalysts in copper‐catalysed alkyne–azide cycloaddition reactions as predicted by the Ahlquist–Fokin calculations. The same copper(I) catalysts are formed during reactions by using the Sharpless–Fokin protocol. The experimental results also provide evidence that sodium ascorbate functions as a base to deprotonate terminal alkynes and additionally give a convincing alternative explanation for the fact that the CuI‐catalysed reactions of certain 1,3‐diazides with phenylacetylene give bis(triazoles) as the major products. The same dinuclear alkynylcopper(I) complexes also function as catalysts in cycloaddition reactions of azides with 1‐iodoalkynes. 相似文献
A series of nonlinear optical (NLO) donor-acceptor (D-A) chromophores containing a fused terthiophene, namely dithienothiophene (DTT), as the electron relay, the same donor group, and acceptors of various strengths, has been investigated by means of infrared and Raman spectroscopies, both in the solid state as well as in a variety of solvents, to evaluate the effectiveness of the intramolecular charge transfer from the electron-donor to the electron-acceptor end groups. The Raman spectral profiles of these NLO-phores measured from their dilute solutions have been found to be rather similar to those of the corresponding solids, and thus their intramolecular charge transfer (ICT) shows very little dependence on the solvent polarity. The experimental results obtained for the DTT-containing NLO-phore with a 4-(N,N-dibutylamino)styryl end group as the donor and a 2,2-dicyanoethen-1-yl end group as the acceptor differ from those previously obtained for two parent "push-pull" chromophores with the same D-A pair but built-up around either a bis(3,4-ethylenedioxythienyl) (BEDOT) or a bithienyl (BT) electron relay. Vibrational spectroscopy shows that DTT is significantly more efficient as an electron relay than BT (which has the same number of conjugated C=C bonds) or BEDOT (which can be viewed as a rigidified version of BT on account of noncovalent intramolecular interactions between heteroatoms of adjacent rings). Density functional theory (DFT) calculations have also been performed on these NLO-phores to assign their main electronic and vibrational features and to obtain information about their structures. An additional merit of these molecular materials was revealed by the infrared spectra of the DTT-based NLO-phores recorded at different temperatures. Thus, spectra recorded between -170 and 150 degrees C did not show any substantial change, indicating that the materials have a high thermal stability, which is of significance for their use as active components in optoelectronic devices. 相似文献
A “click” polymerization of dialkynes that contain an ester linkages and diazides to has been performed to synthesize various polyesters, termed “click polyesters” with a high of 1.0 × 104 to 7.0 × 104 in an excellent yield. This polymerization accompanied a formation of 1,4‐disubstituted triazoles in the polyester main chain by a CuI catalyst. The triazole ring formation in the polyester main chain leads to improved thermal properties and enhancement of the even–odd effect of methylene chain length of the produced click polyesters. This report is the first report of the application of click chemistry to synthesize a series of polyesters under mild conditions.