首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of PbBr(2) with the lithium reagents LiC(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2) (LiArPr(i)(2)) and Et(2)O.LiC(6)H(3)-2,6-(2,6-Pr(i)-4-Bu(t)C(6)H(2))(2) (Et(2)O.LiArPr(i)(2)Bu(t)) furnished the bromide bridged organolead(II) halides [Pb(mu-Br)ArPr(i)(2)](2) (1) and[Pb(mu-Br)ArPr(i)(2)Bu(t)](2) (2) as orange crystals. Treatment of 1 with a stoichiometric amount of methylmagnesium bromide resulted in the "diplumbene" Pr(i)(2)Ar(Me)PbPb(Me)ArPr(i)(2) (3). The addition of 1 equiv of 4-tert-butylphenylmagnesium bromide to 1 afforded the feebly associated, Pb-Pb bonded species [Pb(C(6)H(4)-4-Bu(t))ArPr(i)(2)](2) (4), whereas the corresponding reaction of tert-butylmagnesium chloride and 1 afforded the monomer Pb(Bu(t))ArPr(i)(2) (5). The reaction of the more crowded aryl lead(II) bromide [Pb(mu-Br)ArPr(i)(3)](2) (Ar = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Pr(i)(3))(2)) with 4-isopropyl-benzylmagnesium bromide or LiSi(SiMe(3))(3) yielded the monomers 6, [Pb(CH(2)C(6)H(4)-4-Pr(i))ArPr(i)(3)], or 7, [Pb(Si(SiMe(3))(3))ArPr(i)(3)]. All compounds were characterized with use of X-ray crystallography, (1)H, (13)C, and (207)Pb NMR (3-7), and UV-vis spectroscopy. The dimeric Pb-Pb bonded (Pb-Pb = 3.1601(6) A) structure of 3 may be contrasted with the previously reported monomeric structure of Pb(Me)ArPr(i)(3), which differs from 3 only in that it has para Pr(i) substituents on the flanking aryl rings. The presence of these groups is sufficient to prevent the weak Pb-Pb bonding seen in 3. The dimer 4 displays a Pb-Pb distance of 3.947(1) A, which indicates a very weak lead-lead interaction, and it is possible that this close approach could be caused by packing effects. The monomeric structures of 6 and 7 are attributable to steric effects and, in particular, to the large size of ArPr(i)(3).  相似文献   

2.
A series of symmetric divalent Sn(II) hydrides of the general form [(4-X-Ar')Sn(mu-H)]2 (4-X-Ar' = C6H2-4-X-2,6-(C6H3-2,6-iPr2)2; X = H, MeO, tBu, and SiMe3; 2, 6, 10, and 14), along with the more hindered asymmetric tin hydride (3,5-iPr2-Ar*)SnSn(H)2(3,5-iPr2-Ar*) (16) (3,5-iPr2-Ar* = 3,5-iPr2-C6H-2,6-(C6H2-2,4,6-iPr3)2), have been isolated and characterized. They were prepared either by direct reduction of the corresponding aryltin(II) chloride precursors, ArSnCl, with LiBH4 or iBu2AlH (DIBAL), or via a transmetallation reaction between an aryltin(II) amide, ArSnNMe2, and BH3.THF. Compounds 2, 6, 10, and 14 were obtained as orange solids and have centrosymmetric dimeric structures in the solid state with long Sn...Sn separations of 3.05 to 3.13 A. The more hindered tin(II) hydride 16 crystallized as a deep-blue solid with an unusual, formally mixed-valent structure wherein a long Sn-Sn bond is present [Sn-Sn = 2.9157(10) A] and two hydrogen atoms are bound to one of the tin atoms. The Sn-H hydrogen atoms in 16 could not be located by X-ray crystallography, but complementary M?ssbauer studies established the presence of divalent and tetravalent tin centers in 16. Spectroscopic studies (IR, UV-vis, and NMR) show that, in solution, compounds 2, 6, 10, and 14 are predominantly dimeric with Sn-H-Sn bridges. In contrast, the more hindered hydrides 16 and previously reported (Ar*SnH)2 (17) (Ar* = C6H3-2,6-(C6H2-2,4,6-iPr3)2) adopt primarily the unsymmetric structure ArSnSn(H)2Ar in solution. Detailed theoretical calculations have been performed which include calculated UV-vis and IR spectra of various possible isomers of the reported hydrides and relevant model species. These showed that increased steric hindrance favors the asymmetric form ArSnSn(H)2Ar relative to the centrosymmetric isomer [ArSn(mu-H)]2 as a result of the widening of the interligand angles at tin, which lowers steric repulsion between the terphenyl ligands.  相似文献   

3.
The preparation of a series of extremely bulky secondary amines, Ar*N(H)SiR(3) (Ar* = C(6)H(2){C(H)Ph(2)}(2)Me-2,6,4; R(3) = Me(3), MePh(2) or Ph(3)) is described. Their deprotonation with either LiBu(n), NaH or KH yields alkali metal amide complexes, several monomeric examples of which, [Li(L){N(SiMe(3))(Ar*)}] (L = OEt(2) or THF), [Na(THF)(3){N(SiMe(3))(Ar*)}] and [K(OEt(2)){N(SiPh(3))(Ar*)], have been crystallographically characterised. Reactions of the lithium amides with germanium, tin or lead dichloride have yielded the first structurally characterised two-coordinate, monomeric amido germanium(II) and tin(II) chloride complexes, [{(SiR(3))(Ar*)N}ECl] (E = Ge or Sn; R = Me or Ph), and a chloride bridged amido-lead(II) dimer, [{[(SiMe(3))(Ar*)N]Pb(μ-Cl)}(2)]. DFT calculations on [{(SiMe(3))(Ar*)N}GeCl] show its HOMO to exhibit Ge lone pair character and its LUMO to encompass its Ge based p-orbital. A series of bulky amido silicon(IV) chloride complexes have also been prepared and several examples, [{(SiR(3))(Ar*)N}SiCl(3)] (R(3) = Me(3), MePh(2)) and [{(SiMe(3))(Ar*)N}SiHCl(2)], were crystallographically characterised. The sterically hindered group 14 complexes reported in this study hold significant potential as precursors for kinetically stabilised low oxidation state and/or low coordination number group 14 complexes.  相似文献   

4.
Reaction of TlCl and [LiN(Me)Ar(Mes)2](2) [Ar(Mes)2 = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2)] in Et(2)O generated the thallium amide, TlN(Me)Ar(Mes)2 (1). X-ray data showed that it has a monomeric structure with an average Tl-N distance of 2.364(3) Angstroms. There was also a Tl-arene approach [Tl-centroid = 3.026(2) Angstroms (avg)] to a flanking mesityl ring from the terphenyl substituent. DFT calculations showed that this interaction is weak and supported essentially one coordination for thallium. The electronic spectrum of 1 is hypsochromically shifted in comparison to the monomeric TlAr(Trip)2 (Trip = C(6)H(2)-2,4,6-Pr(i)(3)).  相似文献   

5.
Treatment of M[N(SiMe(3))(2)](2) (M = Mn, Fe, Co) with various bulky beta-diketimines afforded a variety of new three-coordinate complexes which were characterized by UV-vis, (1)H NMR and IR spectroscopy, magnetic measurements, and X-ray crystallography. Reaction of the beta-diketimine H(Dipp)NC(Me)CHC(Me)N(Dipp) (Dipp(2)N(wedge)NH; Dipp = C(6)H(3)-2,6-Pr(i)(2)) with M[N(SiMe(3))(2)](2) (M = Mn or Co) gave Dipp(2)N(wedge)NMN(SiMe(3))(2) (M = Mn, 1; Co, 3) while the reaction of Fe[N(SiMe(3))(2)](2) with Ar(2)N(wedge)NH (Ar = Dipp, C(6)F(5), Mes, C(6)H(3)-2,6-Me(2), or C(6)H(3)-2,6-Cl(2)) afforded the series of iron complexes Ar(2)N(wedge)NFe[N(SiMe(3))(2)] (Ar = Dipp, 2a; C(6)F(5), 2b; Mes, 2c; C(6)H(3)-2,6-Me(2), 2d; C(6)H(3)-2,6-Cl(2), 2e). This represents a new synthetic route to beta-diketiminate complexes of these metals. The four-coordinate bis-beta-diketiminate complex Fe[N(wedge)N(C(6)F(5))(2)](2), 4, was also isolated as a byproduct from the synthesis of 2b. Direct reaction of the Dipp(2)N(wedge)NLi with CoCl(2) gave the "ate" salt Dipp(2)N(wedge)NCoCl(2)Li(THF)(2), 5, in which the lithium chloride has formed a complex with Dipp(2)N(wedge)NCoCl through chloride bridging. The Fe(III) species Dipp(2)N(wedge)NFeCl(2), 6, was obtained cleanly from the reaction of FeCl(3) with Dipp(2)N(wedge)NLi. Magnetic measurements showed that all the complexes have a high spin configuration. The different substituents in the series of iron complexes 2a-e allowed assignment of their paramagnetically shifted (1)H NMR spectra. The X-ray crystal structures 1-2d and 3 showed that they have a distorted three-coordinate planar configuration at the metals whereas complexes 4-6 have highly distorted four-coordinate geometries.  相似文献   

6.
The complexes M(II){N(H)Ar(Pr(i)(6))}(2) (M = Co, 1 or Ni, 2; Ar(Pr(i)(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Pr(i)(3))(2)), which have rigorously linear, N-M-N = 180°, metal coordination, and M(II){N(H)Ar(Me(6))}(2) (M = Co, 3 or Ni, 4; Ar(Me(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Me(3))(2)), which have bent, N-Co-N = 144.1(4)°, and N-Ni-N = 154.60(14)°, metal coordination, were synthesized and characterized to study the effects of the metal coordination geometries on their magnetic properties. The magnetometry studies show that the linear cobalt(II) species 1 has a very high ambient temperature moment of about 6.2 μ(B) (cf. spin only value = 3.87 μ(B)) whereas the bent cobalt species 3 had a lower μ(B) value of about 4.7 μ(B). In contrast, both the linear and the bent nickel complexes 2 and 4 have magnetic moments near 3.0 μ(B) at ambient temperatures, which is close to the spin only value of 2.83 μ(B). The studies suggest that in the linear cobalt species 1 there is a very strong enhanced spin orbital coupling which leads to magnetic moments that broach the free ion value of 6.63 μ(B) probably as a result of the relatively weak ligand field and its rigorously linear coordination. For the linear nickel species 2, however, the expected strong first order orbital angular momentum contribution does not occur (cf. free ion value 5.6 μ(B)) possibly because of π bonding effects involving the nitrogen p orbitals and the d(xz) and d(yz) orbitals (whose degeneracy is lifted in the C(2h) local symmetry of the Ni{N(H)C(ipso)}(2) array) which quench the orbital angular momentum.  相似文献   

7.
The reduction of Ar*GeCl (Ar* = C6H3-2,6-Trip2; Trip = C6H2-2,4,6-i-Pr3) with one equivalent of potassium leads to the formation of a germanium analogue of an alkyne Ar*GeGeAr* 1; reaction of 1 with 2,3-dimethyl-1,3-butadiene yields [Ar*Ge(CH2C(Me)C(Me)CH2)CH2C(Me)=]2 2, which was structurally characterized.  相似文献   

8.
The reaction of Sn(Cl)C(6)H(3)-2,6-Dipp(2) (Dipp = C(6)H(3)-2,6-Pr(i)()(2)) with a stoichiometric amount of potassium in benzene affords 2,6-Pr(i)()(2)-H(3)C(6)SnSnC(6)H(3)-2,6-Pr(i)()(2) (1) as dark blue-green crystals. The compound 1 is a tin analogue of an alkyne. It was characterized by (1)H and (13)C NMR and UV-vis spectroscopy, cyclic voltammetry, combustion analysis and X-ray crystallography. The structural data show that 1 has a trans-bent, planar C(ipso)SnSnC(ipso) skeleton with a Sn-Sn bond distance of 2.6675(4) A and a Sn-Sn-C angle of 125.24(7) degrees. The Sn-Sn distance, which is ca. 0.15 A shorter than a conventional Sn-Sn single bond, and the trans-bent structure indicate the presence Sn-Sn multiple bond character unlike the related singly bonded ArPbPbAr species.  相似文献   

9.
Reaction of the diarylgermylene Ge(Ar(Me(6)))(2) [Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(CH(3))(3))(2)] with tert-butyl isocyanide gave the Lewis adduct species (Ar(Me(6)))(2)GeCNBu(t), in which the isocyanide ligand displays a decreased C-N stretching frequency consistent with an n → π* back-bonding interaction. Density functional theory confirmed that the HOMO is a Ge-C bonding combination between the lone pair of electrons on the germanium atom and the C-N π* orbital of the isocyanide ligand. The complex undergoes facile C-H bond activation to produce a new diarylgermanium hydride/cyanide species and isobutene via heterolytic cleavage of the N-Bu(t) bond.  相似文献   

10.
A series of [Tm(Me)M(mu-Cl)]2 and Tm(R)MCl (Tm(R) = tris(mercaptoimidazolyl)borate; R = Me, tBu, Ph, 2,6-iPr2C6H3 (Ar); M = Mn, Fe, Co, Ni) complexes have been prepared by treatment of NaTm(Me) or LiTm(R) with an excess amount of metal(II) chlorides, MCl2. Treatment of Tm(R)MCl (R = tBu, Ph, Ar) with NaI led to a halide exchange to afford Tm(R)MI. The molecular structures of [Tm(Me)M(mu-Cl)]2 (M = Mn, Ni), [Tm(Me)Ni(mu-Br)]2, Tm(tBu)MCl (M = Fe, Co), Tm(Ph)MCl (M = Mn, Fe, Co, Ni), Tm(Ar)MCl (M = Mn, Fe, Co, Ni), Tm(Ph)MI (M = Mn, Co), and Tm(Ar)MI (M = Fe, Co, Ni) have been determined by X-ray crystallography. The Tm(R) ligands occupy the tripodal coordination site of the metal ions, giving a square pyramidal or trigonal bipyramidal coordination geometry for Tm(Me)M(mu-Cl)]2 and a tetrahedral geometry for the Tm(R)MCl complexes, where the S-M-S bite angles are larger than the reported N-M-N angles of the corresponding hydrotris(pyrazolyl)borate (Tp(R)) complexes. Treatment of Tm(Ph)2Fe with excess FeCl2 affords Tm(Ph)FeCl, indicating that Tm(R)2M as well as Tm(R)MCl is formed at the initial stage of the reaction between MCl2 and the Tm(R) anion.  相似文献   

11.
Reactions of the "digallene" Ar'GaGaAr'(1) (Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)), which dissociates to green :GaAr' monomers in solution, with unsaturated N-N-bonded molecules are described. Treatment of solutions of :GaAr' with the bulky azide N(3)Ar(#) (Ar(#) = C(6)H(3)-2,6-(C(6)H(2)-2,6-Me(2)-4-Bu(t))(2)), afforded the red imide Ar'GaNAr(#) (2). Addition of the azobenzenes, ArylNNAryl (Aryl = C(6)H(4)-4-Me (p-tolyl), mesityl, and C(6)H(3)-2,6-Et(2)) yielded the 1,2-Ga(2)N(2) ring compound Ar'GaN(p-tolyl)N(p-tolyl)GaA' (3) or the products MesN=NC(6)H(2)-2,4-Me(2)-6-Ga(Me)Ar' (4) and 2,6-Et(2)C(6)H(3)N=NC(6)H(3)-2-Et-6-Ga(Et)Ar' (5). Reaction of GaAr' with N(2)CPh(2) yielded the 1,3-Ga(2)N(2) ring compound Ar'Ga(mu:eta(1)-N(2)CPh(2))(2)GaAr' (6), which is quasi-isomeric to 3. Calculations on simple model isomers showed that the Ga(I) amide GaNR(2) (R = Me) is much more stable than the isomeric Ga(III) imide RGaNR. This led to the synthesis of the first stable monomeric Ga(I) amide, GaN(SiMe(3))Ar' ' (8) (Ar' ' = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2) from the reaction of LiN(SiMe(3))Ar' ' (7) and "GaI". Compound 8 is also the first one-coordinate gallium species to be characterized in the solid state. The reaction of 8 with N(3)Ar' ' afforded the amido-imide derivative Ar' 'NGaN(SiMe(3))Ar' ' (9), a gallium nitrogen analogue of an allyl anion. All compounds were spectroscopically and structurally characterized. In addition, DFT calculations were performed on model compounds of the amide, imide, and cyclic 1,2- and 1,3-species to better understand their bonding. The pairs of compounds 2 and 8 as well as 3 and 6 are rare examples of quasi-isomeric heavier main group element compounds.  相似文献   

12.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

13.
Reaction of YI(3)(THF)(3.5) with one equivalent of the potassium beta-diketiminate (BDI) complex [HC{C(CH(3))NAr}(2)K] (Ar = 2,6-Pr(i)(2)C(6)H(3)) affords the monomeric, mono-substituted yttrium BDI complex [HC{C(CH(3))NAr}(2)YI(2)(THF)] in good yield. Reaction of with DME affords [HC{C(CH(3))NAr}(2)YI(2)(DME)] in quantitative yield, which is monomeric also. Reaction of the primary terphenyl phosphane Ar*PH(2) (Ar* = 2,6-(2,4,6-Pr(i)(3)C(6)H(2))(2)C(6)H(3)) with potassium hydride, and recrystallisation from hexane, affords the potassium primary terphenyl phosphanide complex [{Ar*P(H)K(THF)}(2)] in high yield. Compound is dimeric in the solid state, constructed around a centrosymmetric K(2)P(2) four-membered ring, the coordination sphere of potassium is supplemented with an eta(6) K[dot dot dot]C(aryl) interaction. The reaction of with one molar equivalent of in THF affords the THF ring-opened compound [HC{C(CH(3))NAr}(2)Y{O(CH(2))(4)P(H)Ar*}(I)(THF)]. Compound is formed as a mixture of endo(OR) and exo(OR) isomers (: = approximately 2 : 1) which may be separated by fractional crystallisation from hexane-toluene to give pure . Attempted alkylation of with two equivalents of KCH(2)Si(CH(3))(3) affords the potassium yttriate complex [Y{micro-eta(5):eta(1)-ArNC(CH(3))[double bond, length as m-dash]CHC([double bond, length as m-dash]CH(2))NAr}(2)K(DME)(2)] in moderate yield; contains two dianionic dianilide ligands, which are derived from C-H activation of a backbone methyl group, each bonded eta(5) to yttrium in the solid state. The reaction of with one equivalent of KC(8) affords [{HC(C[CH(3)]NAr)(2)YI(micro-OCH(3))}(2)], derived from C-O bond activation of DME, as the only isolable product in very low yield. Compounds , , , , , and have been characterised by single crystal X-ray diffraction, NMR spectroscopy and CHN microanalyses.  相似文献   

14.
A sequence of first row transition metal(II) dithiolates M(SAr)(2) (M = Cr(1), Mn(2), Fe(3), Co(4), Ni(5) and Zn(6); Ar = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Pr(i)(3))(2)) has been synthesized and characterized. Compounds 1-5 were obtained by the reaction of two equiv of LiSAr with a metal dihalide, whereas 6 was obtained by treatment of ZnMe(2) with 2 equiv of HSAr. They were characterized by spectroscopy, magnetic measurements, and X-ray crystallography. The dithiolates 1, 2, and 4-6 possess linear or nearly linear SMS units with further interactions between M and two ipso carbons from C(6)H(2)-2,4,6-Pr(i)(3) rings. The iron species 3, however, has a bent geometry, two different Fe-S distances, and an interaction between iron and one ipso carbon of a flanking ring. The secondary M-C interactions vary in strength in the sequence Cr(2+) approximately Fe(2+) > Co(2+) approximately Ni(2+) > Mn(2+) approximately Zn(2+) such that the manganese and zinc compounds have essentially two coordination but the chromium and iron complexes are quasi four and three coordinate, respectively. The geometric distortions in the iron species 3 suggested that the structure represents the initial stage of a rearrangement into a sandwich structure involving metal-aryl ring coordination. The bent structure of 3 probably also precludes the observation of free ion magnetism of Fe(2+) recently reported for Fe{C(SiMe(3))(3)}(2). DFT calculations on the model compounds M(SPh)(2) (M = Cr-Ni) support the higher tendency of the iron species to distort its geometry.  相似文献   

15.
The synthesis, structure, and properties of several new organogallium(I) compounds are reported. The monovalent compounds GaAr* (Ar* = C(6)H(3)-2,6-Trip(2), Trip = C(6)H(2)-2,4,6-Pr(i)()(3), 1), GaAr# (Ar# = C(6)H(3)-2,6(Bu(t)Dipp)(2), Bu(t)Dipp = C(6)H(2)-2,6-Pr(i)(2)-4-Bu(t)(), 4), and the dimeric (GaAr')(2) (Ar' = C(6)H(3)-2,6-Dipp(2), Dipp = C(6)H(3)-2,6-Pr(i)(2), 6) were synthesized by the reaction of "GaI" with (Et(2)O)LiAr*, (Et(2)O)LiAr# (3), or (LiAr')(2). Compounds 1 and 4 were isolated as green crystals, whereas 6 was obtained as a brown-red crystalline solid. All three compounds dissolved in hydrocarbon solvents to give green solutions and almost identical UV/visible spectra. Cryoscopy of 1 and 6 showed that they were monomeric in cyclohexane. Crystals of 1 and 4 were unsuitable for X-ray crystal structure determinations, but an X-ray data set for 6 showed that it was weakly dimerized in the solid with a long Ga-Ga bond of 2.6268(7) A and a trans-bent CGaGaC core array. The 1,2-diiodo-1,2-diaryldigallane compounds [Ga(Ar*)I](2) (2), [Ga(Ar#)I](2) (5), and [Ga(Ar')I](2) (7) were isolated as byproducts of the synthesis of 1, 4, and 6. The crystal structures of 2 and 7 showed that they had planar ICGaGaCI core arrays with Ga-Ga distances near 2.49 A, consistent with Ga-Ga single bonding. Treatment of 1, 4, and 6 with B(C(6)F(5))(3) immediately afforded the 1:1 donor-acceptor complexes ArGa[B(C(6)F(5))(3)] (Ar = Ar*, 8; Ar#, 9; Ar', 10) that featured almost linear gallium coordination, Ga-B distances near the sum of the covalent radii of gallium and boron, as well as some close Ga...F contacts. Compound 1 also reacted with Fe(CO)(5) under ambient conditions to give Ar*GaFe(CO)(4) (11), which had been previously synthesized by the reaction of GaAr*Cl(2) with Na(2)Fe(CO)(4). Reaction of 1 with 2,3-dimethyl-1,3-butadiene afforded the compound [Ar*GaCH(2)C(Me)C(Me)CH(2)]2 (12) that had a 10-membered 1,5-Ga(2)C(8) ring with no Ga-Ga interaction. Stirring 1 or 6 with sodium readily gave Na(2)[Ar*GaGaAr*] (13) and Na(2)(Ar'GaGaAr') (14). The former species 13 had been synthesized previously by reduction of GaAr*Cl(2) with sodium and was described as having a Ga-Ga triple bond because of the short Ga-Ga distance and the electronic relationship between [Ar*GaGaAr*](2-) and the corresponding neutral group 14 alkyne analogues. Compound 14 has a similar structure featuring a trans-bent CGaGaC core, bridged by sodiums which were also coordinated to the flanking aryl rings of the Ar' ligands. The Ga-Ga bond length was found to be 2.347(1) A, which is slightly (ca. 0.02 A) longer than that reported for 13. Reaction of Ga[N(Dipp)C(Me)](2)CH, 15 (i.e., GaN(wedge)NDipp(2)), which is sterically related to 1, 4, and 6, with Fe(CO)(5) yielded Dipp(2)N(wedge)NGaFe(CO)(4) (16), whose Ga-Fe bond is slightly longer than that observed in 11. Reaction of the less bulky LiAr"(Ar"= C(6)H(3)-2,6-Mes(2)) with "GaI" afforded the new paramagnetic cluster Ga(11)Ar(4)" (17). The ready dissociation of 1, 4, and 6 in solution, the long Ga-Ga distance in 6, and the chemistry of these compounds showed that the Ga-Ga bonds are significantly weaker than single bonds. The reduction of 1 and 6 with sodium to give 13 and 14 supplies two electrons to the di-gallium unit to generate a single bond (in addition to the weak interaction in the neutral precursor) with retention of the trans-bent geometry. It was concluded that the stability of 13 and 14 depends on the matching size of the sodium ion, and the presence of Na-Ga and Na-Ar interactions that stabilize their Na(2)Ga(2) core structures.  相似文献   

16.
Reaction of {Li(THF)Ar'MnI(2)}(2) (Ar' = C(6)H(3)-2,6-(C(6)H(2)-2,6-(i)Pr(3))(2)) with LiAr', LiC≡CR (R = (t)Bu or Ph), or (C(6)H(2)-2,4,6-(i)Pr(3))MgBr(THF)(2) afforded the diaryl MnAr'(2) (1), the alkynyl salts Ar'Mn(C≡C(t)Bu)(4){Li(THF)}(3) (2) and Ar'Mn(C≡CPh)(3)Li(3)(THF)(Et(2)O)(2)(μ(3)-I) (3), and the manganate salt {Li(THF)}Ar'Mn(μ-I)(C(6)H(2)-2,4,6-(i)Pr(3)) (4), respectively. Complex 4 reacted with one equivalent of (C(6)H(2)-2,4,6-(i)Pr(3))MgBr(THF)(2) to afford the homoleptic dimer {Mn(C(6)H(2)-2,4,6-(i)Pr(3))(μ-C(6)H(2)-2,4,6-(i)Pr(3))}(2) (5), which resulted from the displacement of the bulkier Ar' ligand in preference to the halogen. The reaction of the more crowded {Li(THF)Ar*MnI(2)}(2) (Ar* = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(i)Pr(3))(2)) with Li(t)Bu gave complex Ar*Mn(t)Bu (6). Complex 1 is a rare monomeric homoleptic two-coordinate diaryl Mn(II) complex; while 6 displays no tendency to eliminate β-hydrogens from the (t)Bu group because of the stabilization supplied by Ar*. Compounds 2 and 3 have cubane frameworks, which are constructed from a manganese, three carbons from three acetylide ligands, three lithiums, each coordinated by a donor, plus either a carbon from a further acetylide ligand (2) or an iodide (3). The Mn(II) atom in 4 has an unusual distorted T-shaped geometry while the dimeric 5 features trigonal planar manganese coordination. The chloride substituted complex Li(2)(THF)(3){Ar'MnCl(2)}(2) (7), which has a structure very similar to that of {Li(THF)Ar'MnI(2)}(2), was also prepared for use as a possible starting material. However, its generally lower solubility rendered it less useful than the iodo salt. Complexes 1-7 were characterized by X-ray crystallography and UV-vis spectroscopy. Magnetic studies of 2-4 and 6 showed that they have 3d(5) high-spin configurations.  相似文献   

17.
The synthesis and characterization of three new organothallium(I) compounds are reported. Reaction of (Ar'Li)(2) (Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)) and Ar"Li (Ar" = C(6)H(3)-2,6-(C(6)H(3)-2,6-Me(2))(2)) with TlCl in Et(2)O afforded (Ar'Tl)(2) (1) and (Ar' 'Tl)(3) (2). The "dithallene" 1 is the heaviest group 13 dimetallene and features a planar, trans-bent structure with Ar'Tl-Tl = 119.74(14) degrees and Tl-Tl = 3.0936(8) A. Compound 2 is the first structurally characterized neutral, three-membered ring species of formula c-(MR)(3) (M = Al-Tl; R = organo group). The Tl(3) ring has Tl-Tl distances in the range ca. 3.21-3.37 A as well as pyramidal Tl geometries. The Tl-Tl bonds in 1 and 2 are outside the range (2.88-2.97 A) of Tl-Tl single bonds in R(2)TlTlR(2) compounds. The weak Tl-Tl bonding in 1 and 2 leads to their dissociation into Ar'Tl and Ar' 'Tl monomers in hexane. The Ar'Tl monomer behaves as a Lewis base and readily forms a 1:1 donor-acceptor complex with B(C(6)F(5))(3) to give Ar'TlB(C(6)F(5))(3), 3. Adduct 3 features an almost linear thallium C(ipso)-Tl-B angle of 174.358(7) degrees and a Tl-B distance of 2.311(2) A, which indicates strong association. Treatment of 1 with a variety of reagents resulted in no reactions. The lower reactivity of 1 is in accord with the reluctance of Tl(I) to undergo oxidation to Tl(III) due to the unreactive character of the 6s(2) electrons.  相似文献   

18.
The reaction of 1:1 stoichiometries (1:1.5 for the nitrate/tetraethylene glycol (EO4) and pentaethylene glycol (EO5) complexes) of PbX(2) (X = NO(3), Br) with five- to eight-donor poly(ethylene glycols) (PEGs) in 3:1 CH(3)CN/CH(3)OH (CH(3)CN only for the nitrate/EO5 complex) followed by solvent evaporation resulted in six crystalline materials upon which X-ray structural analyses were carried out: [Pb(NO(3))(2)(EO4)](n)(), [Pb(NO(3))(2)(EO5)], [Pb(NO(3))(2)(EO6)], [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O, [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2), and [PbBr(EO7)][PbBr(3)]. The nitrates crystallize as tight ion pairs with the PEG ligands coordinating in an equatorial plane around the Pb(2+) ions. Because EO4 has only five oxygen donors, this complex exhibits steric unsaturation which is overcome by a monodentate interaction with a third nitrate anion that is also coordinated to a neighboring Pb(2+) ion. The six donors of EO5 coordinate in an equatorial plane resulting in a 10-coordinate complex with trans, twisted, bidentate nitrate anions. The seven-donor hexaethylene glycol (EO6) only uses six of its oxygen donors to coordinate Pb(2+). [Pb(NO(3))(2)(EO4)](n)() is monoclinic, P2(1)/c, with a = 7.902(3) ?, b = 22.136(6) ?, c = 8.910(2) ?, beta = 90.96(3) degrees, and Z = 4. [Pb(NO(3))(2)(EO5)] is triclinic P&onemacr;, with a = 9.332(3) ?, b = 10.025(3) ?, c = 11.688(4) ?, alpha = 68.41(3) degrees, beta = 68.39(3) degrees, gamma = 68.58(3) degrees, and Z = 2. [Pb(NO(3))(2)(EO6)] is monoclinic P2(1)/c, with a = 16.289(4) ?, b = 10.773(4) ?, c = 12.329(4) ?, beta = 106.77(2) degrees, and Z = 4. Lead(II) bromide complexes with PEGs tend to crystallize as PEG complexed cations with polymeric lead(II) bromide anions. In the EO5 complex, bromide anions in the polymer also coordinate to the PEG-wrapped Pb(2+) cations. The hexa- and heptaethylene glycol (EO6 and EO7, respectively) complexes contain discreet ions. In these halide complexes, EO7 is the only PEG to expand the Pb(2+) coordination number from eight to nine. [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O is triclinic P&onemacr;, with a = 7.922(6) ?,b = 15.802(9) ?, c = 19.001(9) ?, alpha = 73.19(8) degrees, beta = 88.91(9) degrees, gamma = 87.22(9) degrees, and Z = 4. [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2) is monoclinic P2(1)/c, with a = 14.389(4) ?, b = 31.931(9) ?, c = 8.029(2) ?, beta = 97.76(3) degrees, and Z = 2. [PbBr(EO7)][PbBr(3)] is monoclinic Cc, with a = 13.165(3) ?, b = 24.732(5) ?, c = 8.007(1) ?, beta = 94.58(2) degrees, and Z = 4.  相似文献   

19.
Lithium fluoroarylamidinates [(Ar(F)C(NSiMe(3))(2)Li)(n).xD] (Ar(F) = 4-CF(3)C(6)H(4), n = 2, D = OEt(2), x = 1 (2a); n = 1, D = TMEDA, x = 1 (4a); Ar(F) = 2-FC(6)H(4), n = 2, D = OEt(2), x = 1 (2b); Ar(F) = 4-FC(6)H(4), n = 2, D = OEt(2), x = 2 (2c); Ar(F) = 2,6-F(2)C(6)H(3), n = 2, D = OEt(2), x = 1 (2d); n = 2, D = 2,6-F(2)C(6)H(3)CN, x = 2 (3d); Ar(F) = C(6)F(5), n= 2, D = OEt(2), x = 1 (2e), n = 1, D = TMEDA, x = 1 (4e); n = 1, x = 2, D = OEt(2) (5e); D = THF (6e)) were prepared by the well-known method from LiN(SiMe(3))(2) and the corresponding nitrile in diethyl ether or by addition of the appropriate donor D to the respective diethyl ether complexes. Depending on the substituents at the aryl group and on the donors D, three different types of structures were confirmed by X-ray crystallography. Hydrolysis of 2e gave C(6)F(5)C(NSiMe(3))N(H)SiMe(3) (7e) and C(6)F(5)C(NH)N(H)SiMe(3) (8e). The lithium fluoroarylamidinates 2a-2d react with Me(3)SiCl to give the corresponding tris(trimethylsilyl)fluoroarylamidines Ar(F)C(NSiMe(3))N(SiMe(3))(2) (9a-9d). Attempts to prepare C(6)F(5)C(NSiMe(3))N(SiMe(3))(2) from 2e and Me(3)SiCl failed; however, the unprecedented cage [[C(6)F(5)C(NSiMe(3))(2)Li](4)LiF] (10e) in which a fluoride center is surrounded by a distorted trigonal bipyramid of five Li atoms was obtained from this reaction.  相似文献   

20.
Following the alkane-elimination route, the reaction between tetravalent aryl tintrihydride Ar*SnH3 and trivalent rare-earth-metallocene alkyls [Cp*2Ln(CH{SiMe3}2)] gave complexes [Cp*2Ln(μ-H)2SnAr*] implementing a low-valent tin hydride (Ln=Y, Lu; Ar*=2,6-Trip2C6H3, Trip=2,4,6-triisopropylphenyl). The homologous complexes of germanium and lead, [Cp*2Ln(μ-H)2EAr*] (E = Ge, Pb), were accessed via addition of low-valent [(Ar*EH)2] to the rare-earth-metal hydrides [(Cp*2LnH)2]. The lead compounds [Cp*2Ln(μ-H)2PbAr*] exhibit H/D exchange in reactions with deuterated solvents or dihydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号