首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermolecular coordination effects on the 31P NMR spectra of molecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorus pentachloride were studied by theoretical and experimental methods. The formation of intermolecular dative N→P bond was shown to be accompanied by upfield shift of the phosphorus resonance signal by more than 200 ppm. Appreciable contribution of relativistic effects to 31P NMR chemical shifts was revealed; the spin-orbital contribution to 31P shielding constant was estimated at >210 ppm. Consideration of solvent effect was found to be crucial while studying steric structure of molecular complexes of azoles with phosphorus pentachloride and intermolecular coordination effects on 31P NMR chemical shifts.  相似文献   

2.
We report the first quantum chemical investigation of the solid- and solution-state 31P NMR chemical shifts in models for phosphoryl transfer enzyme reaction intermediates and in polymeric inorganic phosphates. The 31P NMR chemical shifts of five- and six-coordinate oxyphosphoranes containing a variety of substitutions at phosphorus, as well as four-coordinate polymeric orthophosphates and four-coordinate phosphonates, are predicted with a slope of 1.00 and an R2= 0.993 (N = 34), corresponding to a 3.8 ppm (or 2.1%) error over the entire 178.3 ppm experimental chemical shift range, using Hartree-Fock methods. For the oxyphosphoranes, we used either experimental crystallographic structures or, when these were not available, fully geometry optimized molecular structures. For the four-coordinate phosphonates we used X-ray structures together with charge field perturbation, to represent lattice interactions. For the three-dimensional orthophosphates (BPO4, AlPO4, GaPO4 we again used X-ray structures, but for these inorganic systems we employed a self-consistent charge field perturbation approach on large clusters, to deduce peripheral atom charges. For pentaoxyphosphoranes, the solvent effect on 31P NMR chemical shieldings was found to be very small (<0.5 ppm). The 31P NMR chemical shielding tensors in the pentaoxyphosphoranes were in most cases found to be close to axially symmetric and were dominated by changes in the shielding tensor components in the equatorial plane (sigma22 and sigma33). The isotropic shifts were highly correlated (R2= 0.923) with phosphorus natural bonding orbital charges, with the larger charges being associated with shorter axial P-O bond lengths and, hence, more shielding. Overall, these results should facilitate the use of 31P NMR techniques in investigating the structures of more complex systems, such as phosphoryl transfer enzymes, as well as in investigating other, complex oxide structures.  相似文献   

3.
1,2-Addition of transient W(CO)(5)-complexed phosphinidenes exo to hexamethyl Dewar benzene affords the novel 3-phosphatricyclo[3.2.0.0(2,4)]hept-6-ene complexes. The fused tricyclic phosphiranes are obtained as both the Z and the thermally less stable E isomers, the (31)P NMR chemical shifts of which differ by about 60 ppm. A computational investigation shows that the phosphorus pyramidalization and the presence of the gamma double bond are responsible for this effect. The semiquantitative results contribute to a more systematic understanding of the structural influences on (31)P chemical shieldings. The congested double bond of the Z isomer can be epoxidized with m-chloroperbenzoic acid (MCPBA) to afford a fused tetracyclic P,O bis-adduct.  相似文献   

4.
Recent X-ray crystal structure determinations (including a new X-ray determination of the structure of cyano-13-epicobalamin reported herein) create a series of seven base-on cobalamins structurally characterized by modern crystallographic techniques in which the intramolecular equilibrium constant for coordination of the axial benzimidazole ligand (Bzm) varies from 76.6 to 4.90 x 10(7). For the five normal, unepimerized cobalamins, the free energy change for this equilibrium correlates linearly with the axial Co-N bond length (r(2) = 0.99). Absolute assignment of the (1)H and (13)C NMR spectra of two of these structurally characterized cobalamins (CH(3)Cbl and CN-13-epiCbl) together with literature assignments for the other complexes now provides reliable (13)C NMR assignments and chemical shifts for all seven complexes. The magnetic anisotropies of the central cobalt atom of all seven complexes, estimated by a method described earlier, are well correlated with the axial Co-N bond distance (r(2) = 0.97) and the free energy of coordination of the Bzm ligand (r(2) = 0.95). The (31)P NMR chemical shift of the phosphodiester moiety of the nucleotide loop is excellently correlated to the axial Co-N bond length (r(2) = 0.996) of the unepimerized cobalamins and provides a reliable method of estimating this bond length. The (15)N chemical shifts of the axially coordinated Bzm nitrogen vary strongly with the axial Co-N bond distance and correlate linearly with this structural parameter (r(2) = 0.991) except for the case of H(2)OCbl(+), which deviates substantially. However, there is a good linear correlation (r(2) = 0.98) of this (15)N chemical shift with the free energy of Bzm coordination for the five unepimerized cobalamins. Attempts to correlate (13)C NMR chemical shifts with structural, thermodynamic, and corrin ring conformational parameters are discussed.  相似文献   

5.
Pt chemical shifts were calculated from two-component relativistic density functional theory (DFT). The shielding tensors were analyzed by using a recently developed method to decompose the spin-orbit DFT results into contributions from spin-free localized orbitals (here: natural localized molecular orbitals (NLMOs) and natural bond orbitals (NBOs)). Seven chemical shifts in six Pt complexes with Pt oxidation states II, III, and IV; and halide, amino, and amidate ligands were analyzed, with particular focus on the role of nonbonding Pt 5d orbitals. A simple d-orbital 'rotation' model has been used to rationalize some of the observed trends such as the main difference between Pt(II) and Pt(IV) chemical shifts. The localized orbital analysis data showed that most of this difference as well as trends among different Pt complexes with similar coordination can be rationalized by comparing properties of the nonbonding Pt 5d orbitals. We have also analyzed the spin-orbit effects on the chemical shifts of [PtCl4](2-) compared to [PtBr4](2-).  相似文献   

6.
7.
Bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha-D-galactopyranosyl) thiophosphoryl] disulfide shows a strong tendency to form inclusion compounds. The crystal and molecular structure of eight different solvates was established by X-ray analysis. The results indicate three different types of disulfide arrangements in the crystal lattice. By means of 31P CP/MAS NMR experiments the principal values delta 11, delta 22, and delta 33 of the 31P chemical shift tensor were obtained for each form. The orientation of its principal axes with respect to a molecular frame was investigated by means of 31P CP and single-crystal NMR for the complex with propan-2-ol. The principal axis 1 of both chemically equivalent phosphorus atoms is nearly parallel to the P-S bond and the principal axis 3 is very close to the P=S bond. DFT GIAO calculations of the model compound (EtO)2(S)P1SSP2(S)-(OEt)2 allowed assignment of the experimental chemical shift curves to the magnetically nonequivalent atoms P1 and P2. The maximum difference between calculated angles [symbol: see text] i-P-X)calcd and experimental angles [symbol: see text] i-P-X)exptl is 8.3 degrees and the rms distance 3.8 degrees (i = principal axes 1, 2, 3; X = S, -S-, -O1-, -O2-). The influence of C-H...S weak hydrogen bonding on phosphorus shielding was tested theoretically (31P DFT GIAO) employing the dimethoxythiophosphoryl disulfide.CH4 complex as a model compound. The sensitivity of 31P delta ii parameters to intermolecular forces is demonstrated.  相似文献   

8.
Density functional theory (DFT) has been applied to study the conformational dependence of 31P chemical shift tensors in B-DNA. The gg and gt conformations of backbone phosphate groups representing BI- and BII-DNA have been examined. Calculations have been carried out on static models of dimethyl phosphate (dmp) and dinucleoside-3',5'-monophosphate with bases replaced by hydrogen atoms in vacuo as well as in an explicit solvent. Trends in 31P chemical shift anisotropy (CSA) tensors with respect to the backbone torsion angles alpha, zeta, beta, and epsilon are presented. Although these trends do not change qualitatively upon solvation, quantitative changes result in the reduction of the chemical shift anisotropy. For alpha and zeta in the range from 270 degrees to 330 degrees and from 240 degrees to 300 degrees , respectively, the delta22 and delta33 principal components vary within as much as 30 ppm, showing a marked dependence on backbone conformation. The calculated 31P chemical shift tensor principal axes deviate from the axes of O-P-O bond angles by at most 5 degrees . For solvent models, our results are in a good agreement with experimental estimates of relative gg and gt isotropic chemical shifts. Solvation also brings the theoretical deltaiso of the gg conformation closer to the experimental gg data of barium diethyl phosphate.  相似文献   

9.
The phosphide La(4)Rh(8)P(9) was synthesized from the elements in a bismuth flux. The structure was refined from single crystal diffractometer data: space group Cmcm, a = 1303.1(2), b = 1893.2(2), c = 576.70(6) pm, wR2 = 0.0277, 1380 F(2) values, 65 variables. The rhodium and phosphorus atoms build up a three-dimensional [Rh(8)P(9)] polyanion which leaves larger cages for the three crystallographically independent lanthanum sites. The rhodium atoms have between four and six phosphorus neighbors at Rh-P distance ranging from 229 to 254 pm. Three of the four crystallographically independent phosphorus atoms are isolated (P(3-) units), while the P4 atoms form dimers with double bond character (208 pm P-P). The P(2)(2-) diphosphenide units bond side-on to a Rh3 and end-on to four Rh5 atoms. (31)P magic angle spinning (MAS) NMR spectroscopy is able to resolve three of the four crystallographically distinct phosphorus sites. The doubly bonded phosphorus site P4 is characterized by an axially symmetric shielding tensor of moderate anisotropy Δσ = σ(33) - σ(iso) = 257 ppm. Electronic band structure calculations prove the metallic character and reveal the significant difference between the isolated P(3-) and the phosphorus atoms of the P(2)(2-) units. Magnetic susceptibility measurement reveals Pauli paramagnetism.  相似文献   

10.
Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N{31P} rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N{31P} REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and applied the above approach to reanalyze the 15N{31P} REDOR of the lysine side chain approaching the HAP surface and have refined the binding models proposed earlier. We obtain 15N-31P distances between 3.3 and 5 A from these models that are indicative of the possibility of a lysine-phosphate hydrogen bond.  相似文献   

11.
The 100 MHz proton and 40.4 MHz 31P NMR spectra of phosphirane (1) have been recorded at ?20 °C and analysed iteratively to yield coupling constants and chemical shifts. The 22.6 MHz 13C spectrum of 1 was recorded at 0 °C and analyzed. The 31P chemical shift of 1 was measured as 40 467 515.97 ± 0.08 Hz relative to TMS as 100 000 000.00 Hz. The geminal P-C-H couplings in 1 are opposite in sign and of different magnitudes (+16.14 and ?2.64 Hz); the P? H coupling (+158.34 Hz) is smaller than that in any other organic phosphine. These observations are discussed and correlated with the geometry of 1. The electronic structure of the strained ring of 1 is discussed in terms of a localized valence bond approach.  相似文献   

12.
Solid state NMR spectroscopy and gauge including atomic orbital (GIAO) theoretical calculations were employed to establish structural restraints (ionization, hydrogen bonding, spatial arrangement) for O-phosphorylated l-threonine derivatives in different ionization states and hydrogen bonding strengths. These structural restraints are invaluable in molecular modeling and docking procedures for biological species containing phosphoryl groups. Both the experimental and the GIAO approach show that 31P delta ii chemical shift tensor parameters are very sensitive to the ionization state. The negative values found for the skew kappa are typical for -2 phosphates. The distinct span Omega values reflect the change of strength of hydrogen bonding. For species in the -1 ionization state, engaged in very strong hydrogen bonds, Omega is smaller than for a phosphate group involved in weak hydrogen bonding. For phosphates in the -2 ionization state, Omega is significantly smaller compared to -1 species, although the kappa for -1 samples never reaches negative values. For -1 phosphate residues, in the case when 1H one pulse and/or combined rotation and multiple pulse spectroscopy (CRAMPS) sequences fail and assignment of proton chemical shift is ambiguous, a combination of 1H-(13)C and 1H-(31)P 2D heteronuclear correlation (HETCOR) correlations is found to be an excellent tool for the elucidation of 1H isotropic chemical shifts. In addition, a 2D strategy using 1H-(1)H double quantum filter (DQF) correlations [a back-to-back (BABA) sequence in this work] is useful for analyzing the topology of hydrogen bonding. In the case of a multicenter phosphorus domain, 2D 31P-(31)P proton driven spin diffusion experiments give information about the spatial arrangement of the phosphate residues.  相似文献   

13.
Diagrams of isoshielding lines in the vicinity of lone pairs of nitrogen and phosphorus atoms, as well as a C-N bond, have been calculated. The magnetic shielding constants of the protons were calculated by the gauge-invariant atomic-orbital method with the use of localized molecular orbitals and expansions of the atomic wave functions in Gaussian functions. The diagrams of the isoshielding lines have been used for the evaluation of chemical shifts in piperidine derivatives for the purpose of accounting for the experimentally observed tendencies in chemical shifts.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 21, No. 4, pp. 460–465, July–August, 1985.  相似文献   

14.
李树森  王国权  李耀和  李英  袁承业 《化学学报》1993,51(12):1195-1202
本文通过两组含磷非对映异构体^3^1P NMR化学位移的测定和分子力学计算,观察到非对映异构体之间,分子力学计算的磷原子局部Van der Waals相互作用能( E~V~D~W~-~P)是影响其^3^1P NMR化学位移的主要因素,即E~V~D~W~-~P大的异构体,δ~3~1~P在低场,E~V~D~W~-~P小的,δ~3~1~P在高场.这一结果对利用非对映异构体中某核的NMR化学位移的实验测定,结合分子力学计算的该核的局部Van der Waals相互作用能, 建立一种简便的确定非对映异构体中未知不对称中心的绝对构型的新方法,具有一定的理论意义和实用价值  相似文献   

15.
The usage of alkyl aluminum compounds and related structures as co‐catalyst finds a broad range of application in homogeneous and heterogeneous catalysis. While understanding the nature of the aluminum species in solution or in solids can be a challenge, 27Al solid state NMR is a powerful tool to understand the structures of Al species, but their assignment remains mostly empirical, typically by comparing chemical shifts with known compounds. In this work, the observed trends in 27Al‐NMR parameters – chemical shift and quadrupolar coupling constant – of chloroalkyl aluminum compounds, a prototypical class of important Lewis activators, are traced back to their frontier orbitals and electron polarization through a natural localized molecular orbital analysis. This study thus provides guidelines to understand the nature of chemical shift and thereby assignment of possible structure.  相似文献   

16.
This paper represents an extension of our work on the (1)H and (13)C NMR chemical shifts of norbornane and 2-endo-norborneol. NCS-NBO analysis was employed to probe contributions of bond orbitals and orbitals of lone pairs to nuclear shielding in conformers of the alcohol generated by rotation of the C-O bond. Variations in (1)H and (13)C chemical shifts with the dihedral angle are discussed in terms of Lewis and non-Lewis partitioning and their respective importance is evaluated. In addition to hyperconjugation of the lone pair in a p orbital of oxygen that was previously reported, a sizable participation of the lone pair which is in an sp orbital is also observed and their combined effect dominates the carbon chemical shifts of the C(1)-C(2)-OH and C(3)-C(2)-OH fragments. Both lone pairs on oxygen also contribute to localized, though-space effects on nuclei in the vicinity, these effects answering for the largest deviations in hydrogen chemical shifts on rotation around the C-O bond. On the other hand, for conformers in which nonbonded repulsions lead to distortions in the molecular framework, variations in chemical shifts may be attributed to angular effects.  相似文献   

17.
The phosphorus chemical shift (CS) tensors of several ruthenium carbonyl compounds containing a phosphido ligand, micro), bridging a Ru [bond] Ru bond were characterized by solid-state (31)P NMR spectroscopy. As well, an analogous osmium compound was examined. The structures of most of the clusters investigated have approximate local C(2v) symmetry about the phosphorus atom. Compared to the "isolated" PH(2)(-) anion, the phosphorus nucleus of a bridging phosphido ligand exhibits considerable deshielding. The phosphorus CS tensors of most of the compounds have spans ranging from 230 to 350 ppm and skews of approximately zero. Single-crystal NMR was used to investigate the orientation of the phosphorus CS tensors for two of the compounds, Ru(2)(CO)(6)(mu(2)-C [triple bond] C [bond] Ph)(mu(2)-PPh(2)) and Ru(3)(CO)(9)(mu(2)-H)(mu(2)-PPh(2)). The intermediate component of the phosphorus CS tensor, delta(22), lies along the local C(2) axis in both compounds. The least shielded component, delta(11), lies perpendicular to the Ru [bond] P [bond] Ru plane while the most shielded component, delta(33), lies perpendicular to the C [bond]P [bond] C plane. The orientation of the phosphorus CS tensor for a third compound, Ru(2)(CO)(6)(mu(2)-PPh(2))(2), was investigated by the dipolar-chemical shift NMR technique and was found to be analogous, suggesting it to be the same in all compounds. Ab initio calculations of phosphorus magnetic shielding tensors have been carried out and reproduce the orientations found experimentally. The orientation of the CS tensor has been rationalized using simple frontier MO theory. Splittings due to (99,101)Ru [bond] (31)P spin-spin coupling have been observed for several of the complexes. A rare example of (189)Os [bond] (31)P spin-spin splittings is observed in the (31)P MAS NMR spectrum of the osmium cluster, where (1)J((189)Os, (31)P) is 367 Hz. For this complex, the (189)Os nuclear quadrupolar coupling constant is on the order of several hundred megahertz.  相似文献   

18.
This contribution describes a method that manipulates the alignment director of a liquid crystalline sample to obtain anisotropic magnetic interaction parameters, such as dipolar coupling, in an oriented liquid crystalline sample. By changing the axis of rotation with respect to the applied magnetic field in a spinning liquid crystalline sample, the dipolar couplings present in a normally complex strong coupling spectrum are scaled to a simple weak coupling spectrum. This simplified weak coupling spectrum is then correlated with the isotropic chemical shift in a switched angle spinning (SAS) two-dimensional (2D) experiment. This dipolar-isotropic 2D correlation was also observed for the case where the couplings are scaled to a degree where the spectrum approaches strong coupling. The SAS 2D correlation of C(6)F(5)Cl in the nematic liquid crystal I52 was obtained by first evolving at an angle close to the magic angle (54.7 degrees ) and then directly detecting at the magic angle. The SAS method provides a 2D correlation where the weak coupling pairs are revealed as cross-peaks in the indirect dimension separated by the isotropic chemical shifts in the direct dimension. Additionally, by using a more complex SAS method which involves three changes of the spinning axis, the solidlike spinning sideband patterns were correlated with the isotropic chemical shifts in a 2D experiment. These techniques are expected to enhance the interpretation and assignment of anisotropic magnetic interactions including dipolar couplings for molecules dissolved in oriented liquid crystalline phases.  相似文献   

19.
The method of gradient invariant atomic orbitals with expansion by Gaussian functions has been used to compute the diagrams for magnetic isoshielding lines in the vicinity of unshared electron pairs of an oxygen atom and the C-O bond. From localized molecule orbitals the chemical shift in 1,3-dioxane has been analyzed. A nonempirical calculation has been made of the electronic structure of a number of six-membered heterocycles and a qualitative correlation has been established between the relative charges and the chemical shifts.Deceased.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 2, pp. 157–166, March–April, 1987.The authors express their gratitude to G. K. Zakirova for his assistance in making calculations using a model EC-1033 computer.  相似文献   

20.
The 31P chemical shift anisotropy (CSA) offers a potential source of new information to help determine the structures of aluminophosphate (AlPO) framework materials. We investigate how to measure the CSAs, which are small (span of ~20–30 ppm) for AlPOs, demonstrating the need for CSA-amplification experiments (often in conjunction with 27Al and/or 1H decoupling) at high magnetic field (20.0 T) to obtain accurate values. We show that the most shielded component of the chemical shift tensor, δ33, is related to the length of the shortest P─O bond, whereas the more deshielded components, δ11 and δ22 can be related more readily to the mean P─O bond lengths and P─O─Al angles. Using the case of Mg-doped STA-2 as an example, the CSA is shown to be much larger for P(OAl)4–n(OMg)n environments, primarily owing to a much shorter P─O(Mg) bond affecting δ33, however, because the mean P─O bond lengths and P─O─T (T = Al, Mg) bond angles do not change significantly between P(OAl)4 and P(OAl)4–n(OMg)n sites, the isotropic chemical shifts for these species are similar, leading to overlapped spectral lines. When the CSA information is included, spectral assignment becomes unambiguous, therefore, although the specialist conditions required might preclude the routine measurement of 31P CSAs in AlPOs, in some cases (particularly doped materials), the experiments can still provide valuable additional information for spectral assignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号