共查询到20条相似文献,搜索用时 0 毫秒
1.
Brandon EF van Ooijen RD Sparidans RW Lázaro LL Heck AJ Beijnen JH Schellens JH 《Journal of mass spectrometry : JMS》2005,40(6):821-831
The cyclic depsipeptide aplidine is a new anti-cancer drug of marine origin. Four metabolites of this compound were found after incubation with pooled human microsomes using gradient high-performance liquid chromatography with ultraviolet detection. After chromatographic isolation, the metabolites have been identified using nano-electrospray triple quadrupole mass spectrometry. A highly specific sodium-ion interaction with the cyclic structure opens the depsipeptide ring, and cleavage of the amino acid residues gives sequence information when activated by collision-induced dissociation in the second quadrupole. The aplidine molecule could undergo the following metabolic reactions: hydroxylation at the isopropyl group (metabolites apli-h 1 and apli-h 2); C-dealkylation at the N(Me)-leucine group (metabolite apli-da); hydroxylation at the isopropyl group and C-dealkylation at the N(Me)-leucine group (metabolite apli-da/h), and C-demethylation at the threonine group (metabolite apli-dm). The identification of these metabolites formed in vitro may greatly aid the elucidation of the metabolic pathways of aplidine in humans. 相似文献
2.
Jing Su Fangyuan Jia Junjie Lu Weixu Chen Han Sun Tong Liu Xia Wu 《Biomedical chromatography : BMC》2020,34(4):e4806
Rosmarinic acid (RA) is a phenolic acid originally isolated from the herb medicine Rosmarinus officinalis. The purpose of this study was to identify the metabolites of RA. RA was incubated with human liver microsomes in the presence of β-nicotinamide adenine dinucleotide phosphate tetrasodium salt and/or uridine diphosphate glucuronic acid using glutathione (GSH) as a trapping agent. After 60-min incubation, the samples were analyzed using high-resolution liquid chromatography tandem mass spectrometry. Under the current conditions, 14 metabolites were detected and identified. Our data revealed that RA was metabolized through the following pathways: the first pathway is the oxidation of catechol to form ortho-quinone intermediates, which react with GSH to form mono-GSH adducts (M1, M2, and M3) and bis-GSH adducts (M4 and M5); the second pathway is conjugation with glucuronide to yield acylglucuronide (M7), which further reacts with GSH to form RA-S-acyl-GSH adduct (M9); the third pathway is hydroxylation to form M10, M11, and M12, which further react with GSH to form mono-GSH adducts (M13 and M14); the fourth pathway is conjugation with GSH through Michael addition (M6); the fifth pathway is conjugation with glucuronidation, forming M8, which is the major metabolic pathway of RA. 相似文献
3.
Ponatinib is an oral drug for the treatment of chronic myeloid leukemia and acute lymphoblastic leukemia, which has been reported to increase the risk of hepatotoxicity. The aim of this study was to characterize the metabolites of ponatinib in human liver microsomes as well as its reactive metabolites. Ponatinib was incubated with human liver microsomes in the presence of NADPH and trapping agents (glutathione or potassium cyanide). The metabolites were characterized by liquid chromatography in combination with Q-Exactive-Orbitrap-MS. Under the current conditions, six metabolites were detected and structurally identified on the basis of their accurate masses, fragmentation patterns, and retention times. M3 (N-demethylation) was unambiguously identified by matching its retention time and fragment ions with those of its reference standard. N-demethylation and oxygenation were proved to be the predominant metabolic pathways of ponatinib. In addition, two reactive metabolites (cyano adducts) were detected in human liver microsomes in the presence of potassium cyanide and NADPH, suggesting that ponatinib underwent CYP450-mediated metabolic activation, which could be one of the causative mechanisms for its hepatotoxicity. The current study provides new information regarding the metabolic profiles of ponatinib and would be helpful in understanding the effectiveness and toxicity of ponatinib, especially the mechanism of hepatotoxicity. 相似文献
4.
The metabolism of arbidol in humans was studied using liquid chromatography-electrospray ionization (ESI) ion trap mass spectrometry (ITMS) after an oral dose of 300-mg arbidol. A total of 17 metabolites were identified including the glucuronide arbidol and the glucuronide sulfinylarbidol as the major metabolites.Arbidol and its metabolites have some common fragmentation patterns as a result of a homolytic bond cleavage. This cleavage will form odd-electron ions with the loss of a radical. The arbidol fragmentation sequence is first to lose dimethylamine (45 Da), followed by the loss of acetaldehyde (44 Da), and then the phenylthio radical (109 Da). This fragmentation sequence is also observed from N-demethylarbidol, sulfonylarbidol, and N-demethylsulfonylarbidol. However, for sulfinylarbidol and N-demethylsulfinylarbidol, the fragmentation sequence is reversed so that the phenylsulfiny radical (125 Da) was lost first, followed by the loss of dimethylamine (45 Da), and then acetaldehyde (44 Da). The exact masses for arbidol and sulfinylarbidol fragment ions were determined by a quadrupole/time-of-flight mass spectrometer (Q-TOF MS).The phase II metabolites, such as sulfate and glucuronide conjugates of arbidol, N-demethylarbidol, sulfonylarbidol, and N-demethylsulfonylarbidol were identified by observing the neutral loss of 80 Da (SO(3)) or 176 Da (glucuronic acid) from the MS(2) spectra. The sulfate and glucuronide conjugates such as sulfinylarbidol and N-demethylsulfinylarbidol had an unusual fragmentation pattern, in which the phenylsulfinyl radical (125 Da) was lost before the loss of SO(3) group (80 Da) or glucuronic acid (176 Da) occurred. 相似文献
5.
Ji HY Lee H Kim JH Kim KH Lee KR Shim HJ Son M Lee HS 《Journal of separation science》2012,35(9):1102-1109
Corydaline is a pharmacologically active isoquinoline alkaloid isolated from Corydalis tubers. It exhibits the antiacetylcholinesterase, antiallergic, antinociceptive, and gastric emptying activities. The purposes of this study were to establish in vitro metabolic pathways of corydaline in human liver microsomes and hepatocytes by identification of their metabolites using liquid chromatography-ion trap mass spectrometry. Human liver microsomal incubation of corydaline in the presence of an NADPH-generating system resulted in the formation of nine metabolites, namely, four O-desmethylcorydaline [M1 (yuanhunine), M2 (9-O-desmethylcorydaline), M3 (isocorybulbine), and M4 (corybulbine)], three di-O-desmethylcorydaline [M5 (9,10-di-O-desmethylcorydaline), M6 (2,10-di-O-desmethylcorydaline), and M7 (3,10-di-O-desmethylcorydaline)], M8 (hydroxyyuanhunine), and M9 (hydroxycorydaline). Incubation of corydaline in human hepatocytes produced four metabolites including M1, M5, M6, and M9. O-Demethylation and hydroxylation were the major metabolic pathways for the metabolism of corydaline in human liver microsomes and hepatocytes. 相似文献
6.
Sugimoto T Bamba T Izumi Y Nomura H Shiina T Fukusaki E 《Journal of separation science》2011,34(24):3587-3596
This study sought to develop techniques for LC/MS-based metabolomics and to verify that an MS/MS spectral tag (MS2T) could be used in practical secondary metabolite profiling. The retention time (RT), precursor ions, and fragment ions generated by nozzle-skimmer fragmentation were determined using ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOF-MS) and compared with the MS2T. A standard mix was analyzed with UPLC/TOF-MS under the same conditions as were used to construct the MS2T. The difference in RT for the standards was less than 0.15 min and the average RSD was about 2.8%, suggesting that the analysis was highly repeatable. Both precursor ions and fragment ions were observed when the cone voltage was 75 V. Experimental data and fragmentation pattern in the MS2T annotation list were highly similar. Wild-type and cas-1 mutant Arabidopsis thaliana samples treated with an elicitor were analyzed using UPLC/TOF-MS. Sixty-five peaks were successfully annotated. Fragment ions were observed with nozzle-skimmer fragmentation in 50 of 65 (77%) peaks. The reliability of annotation may have increased as a result of fragment ions. Results of multivariate analysis suggested that cas-1 was related to induction of the biosynthesis of these flavonoids. The devised method facilitated practical secondary metabolite profiling. 相似文献
7.
Trimethoprim (TMP) and diaveridine (DVD) are used in combination with sulfonamides and sulfaquinoxlaine as an effective antibacterial agent and antiprotozoal agent, respectively, in humans and animals. To gain a better understanding of the metabolism of TMP and DVD in the food-producing animals, the metabolites incubated with liver microsomes of pigs were analyzed for the first time with high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry. Seven TMP-related and six DVD-related metabolites were characterized based on the accurate MS2 spectra and known structure of the parent drug, respectively. The metabolites of TMP were identified as two O-demethylation metabolites, a di-O-demethylation metabolite, two N-oxides metabolites, a hydroxylated metabolite on the methylene carbon and a hydroxylated metabolite on the methyl group. DVD was also biotransformed to two O-demethylation metabolites, a di-O-demethylation metabolite, an N-oxide metabolite, a hydroxylation metabolite on the methylene carbon and a hydroxylation metabolite followed by O-demethylation. The results indicate that the two compounds have similar biotransformation pathways in pigs. O-Demethylation was the major metabolic route of TMP and DVD in the pig liver microsomes. The proposed metabolic pathways of TMP and DVD in liver microsomes will provide a basis for further studies of the in vivo metabolism of the two drugs in food-producing animals. 相似文献
8.
In this paper we describe the application of electrospray time-of-flight mass spectrometry (ESI-TOFMS) to structural elucidation of the fragment ions formed from a range of natural and synthetic allelochemical derivatives. The extensive mass spectrometric characterisation of ten non-glucosylated benzoxazinone derivatives using this method is described here for the first time. The analytes include six naturally occurring 1,4-benzoxazin-3(4H)-one derivatives, including the hydroxamic acids DIMBOA [2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one] and DIBOA [2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one], lactams HBOA [2-hydroxy-2H-1,4-benzoxazin-3(4H)-one] and HMBOA [2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one], benzoxazolinones BOA [benzoxazolin-2(3H)-one] and MBOA [6-methoxy-benzoxazolin-2(3H)-one] and four synthetic variations, 2'H-DIBOA [4-hydroxy-2H-1,4-benzoxazin-3(4H)-one], 2'OMe-DIBOA [2-methoxy-4-hydroxy-2H-1,4-benzoxazin-3(4H)-one], 2'H-HBOA [2H-1,4-benzoxazin-3(4H)-one] and 2'OMe-HBOA [2-methoxy-2H-1,4-benzoxazin-3(4H)-one]. Assignments of the mass spectral fragments were aided by elemental composition calculation results, comparison of structural analogues and background literature, and acquired knowledge regarding feasible structures for the compounds. The influence of substituents on the chemical reactivity of the compounds with respect to the observed MS behaviour over varying nozzle potentials is addressed and, through comparison of the structural analogues, generic fragmentation patterns have also been identified. 相似文献
9.
Pammi Praneetha Ankit Balhara Mayur K. Ladumor Dilip Kumar Singh Amol Patil Jalvadi Preethi Sunil Pokharkar Abhijeet Yashwantrao Deshpande Sanjeev Giri Saranjit Singh 《Journal of mass spectrometry : JMS》2019,54(9):738-749
Black pepper, though commonly employed as a spice, has many medicinal properties. It consists of volatile oils, alkaloids, pungent resins, etc., of which piperine is a major constituent. Though safe at low doses, piperine causes alteration in the activity of drug metabolising enzymes and transporters at high dose and is known to precipitate liver toxicity. It has a potential to form reactive metabolite(s) (RM) owing to the presence of structural alerts, such as methylenedioxyphenyl (MDP), α, β‐unsaturated carbonyl group (Michael acceptor), and piperidine. The present study was designed to detect and characterize stable and RM(s) of piperine formed on in vitro incubation with human liver microsomes. The investigation of RMs was done with the aid of trapping agents, viz, glutathione (GSH) and N‐acetylcysteine (NAC). The samples were analysed by ultra‐high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC‐HRMS) using Thermo Scientific Q Exactive Plus Orbitrap. Full scan MS followed by data‐dependent MS2 (Full MS‐ddMS2) mode was used to establish mass spectrometric fragmentation pathways of protonated piperine and its metabolites. In total, four stable metabolites and their isomers (M1a‐c, M2a‐b, M3a‐c, and M4a‐b) were detected. Their formation involved removal of carbon (3, M1a‐c), hydroxylation (2, M2a‐b), hydroxylation with hydrogenation (3, M3a‐c), and dehydrogenation (2, M4a‐b). Out of these metabolites, M1, M2, and M3 are reported earlier in the literature, but their isomers and two M4 variants are novel. In addition, six novel conjugates of RMs, including three GSH conjugates of m/z 579 and three NAC conjugates of m/z 435, were also observed. 相似文献
10.
Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was employed to investigate the in vitro metabolism of emodin. Emodin was incubated with rat liver microsomes in the presence of a NADPH-generating system, followed by extraction with ethyl acetate. After separation on a reversed-phase C18 analytical column with a linear gradient elution of methanol and 0.1% formic acid in water, negative electrospray ionization tandem mass spectrometry experiments were performed. As a result, the parent drug and its six metabolites were detected from rat liver microsomal incubations. The identification of the metabolites and elucidation of their structure were performed by comparing the changes in molecular masses (DeltaM), retention times and MS(2) spectral patterns of metabolites with those of parent drug. Besides three mono-hydroxylated metabolites (omega-hydroxyemodin, 2-hydroxyemodin, 4-hydroxyemodin), three other metabolites were identified, which were emodic acid, 3-carbomethoxy-6-methoxy-1,8-dihydroxyanthraquinone and physcion, respectively. 相似文献
11.
Lee SK Jun IH Yoo HH Kim JH Seo YM Kang MJ Lee SH Jeong TC Kim DH 《Rapid communications in mass spectrometry : RCM》2008,22(1):52-58
The in vitro metabolism of deoxypodophyllotoxin (DPT), a medicinal herbal product isolated from Anthriscus sylvestris (Apiaceae), was investigated in rats and human microsomes and human recombinant cDNA-expressed CYPs. The incubation of DPT with pooled human microsomes in the presence of NADPH generated five metabolites while its incubation with dexamethasone (Dex)-induced rat liver resulted in seven metabolites (M1-M7) with major metabolic reactions including mono-hydroxylation, O-demethylation and demethylenation. Reasonable structures of the seven metabolites of DPT could be proposed, based on the electrospray tandem mass spectra. Chemical inhibition by ketoconazole and metabolism studies with human recombinant cDNA-expressed CYPs indicated that CYP 3A4 and 2C19 are the major CYP isozymes in the metabolism of DPT in human liver microsomes. 相似文献
12.
Changfu Cheng Richard Gallegos Gary Bridson Lijun Wu Scott Harbeson Robert Zelle Roger Tung 《Journal of mass spectrometry : JMS》2013,48(6):640-650
Atazanavir (marketed as Reyataz®) is an important member of the human immunodeficiency virus protease inhibitor class. LC‐UV‐MSn experiments were designed to identify metabolites of atazanavir after incubations in human hepatocytes. Five major (M1–M5) and seven minor (M7–M12) metabolites were identified. The most abundant metabolite, M1, was formed by a mono‐oxidation on the t‐butyl group at the non‐prime side. The second most abundant metabolite, M2, was also a mono‐oxidation product, which has not yet been definitively identified. Metabolites, M3 and M4, were structural isomers, which were apparently formed by oxidative carbamate hydrolysis. The structure of M5 comprises the non‐prime side of atazanavir which contains a pyridinyl‐benzyl group. Metabolite M6a was formed by the cleavage of the pyridinyl‐benzyl side chain, as evidenced by the formation of the corresponding metabolic product, the pyridinyl‐benzoic acid (M6b). Mono‐oxidation also occurred on the pyridinyl‐benzyl group to produce the low abundance metabolite M8. Oxidation of the terminal methyl groups produced M9 and M10, respectively, which have low chemical stability. Trace‐level metabolites of di‐oxidations, M11 and M12, were also detected, but the complexity of the molecule precluded identification of the second oxidation site. To our knowledge, metabolites M6b and M8 have not been reported. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
14.
Oral prochlorperazine (PCZ), an antiemetic, undergoes extensive first-pass metabolism. The study developed a simultaneous analytical method for PCZ and its major metabolites, prochlorperazine sulfoxide (PCZSO), N-demethylprochlorperazine (NDPCZ) and 7-hydroxyprochlorperazine (PCZOH), in human plasma using an isocratic liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Deproteinized plasma specimens were separated using a 3 μm particle size octadecylsilyl column, and the run time was 10 min. The calibration curves were linear over the concentration ranges of 0.01-40 μg/L for PCZ, NDPCZ and PCZOH, and 0.05-80 μg/L for PCZSO. The intra- and inter-assay precisions and accuracies were within 7.0 and 99-104% and within 9.0 and 99-105%, respectively. The lower limits of quantification in human plasma were 10 ng/L for PCZ, NDPCZ and PCZOH, and 50 ng/L for PCZSO. The validated method was applied to the determination of plasma samples in 37 cancer patients receiving PCZ. Large interindividual variations were observed in plasma concentrations of PCZ, PCZSO, NDPCZ and PCZOH (relative standard deviation, 89.4, 88.7, 86.4 and 78.2%, respectively). In conclusion, this simultaneous LC-MS/MS method with acceptable analytical performance can be helpful for evaluating the pharmacokinetics of PCZ, including the determination of its metabolites in cancer patients and in clinical research. 相似文献
15.
Tozuka Z Kaneko H Shiraga T Mitani Y Beppu M Terashita S Kawamura A Kagayama A 《Journal of mass spectrometry : JMS》2003,38(8):793-808
Triple-stage quadrupole (TSQ) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) and ion trap ESI-MS/MS can be used to cleave protonated molecules to produce carbocations and neutral molecules in the positive ion mode. Dissociation products which correspond to protonated forms of neutral fragment molecules can also be trapped and detected. These protonated molecules in turn can cleave via carbocation cleavage, ipso cleavage, onium cleavage or McLafferty or related rearrangements. One can elucidate the structures of metabolites from the differences in m/z ratios of the fragments arising from the original drug compound and its metabolite. This strategy for structural elucidation is further facilitated by estimates of the reactivity of drugs with oxygen diradicals involved in cytochrome P-450 cycles. 相似文献
16.
Yan‐Wei Jia Zhong‐Qiu Zeng Hai‐Li Shi Jian Liang Yi‐Ming Liu Ya‐Xiong Tang Xun Liao 《Biomedical chromatography : BMC》2016,30(9):1363-1370
Belamcanda chinensis has been extensively used as antibechic, expectorant and anti‐inflammatory agent in traditional medicine. Irisflorentin is one of the major active ingredients. However, little is known about the metabolism of irisflorentin so far. In this work, rat liver microsomes (RLMs) were used to investigate the metabolism of this compound for the first time. Seven metabolites were detected. Five of them were identified as 6,7‐dihydroxy‐5,3′,4′,5′‐tetramethoxy isoflavone (M1), irigenin (M2), 5,7,4′‐trihydroxy‐6,3′,5′‐trimethoxy isoflavone (M3), 6,7,4′‐trihydroxy‐5,3′,5′‐trimethoxy isoflavone (M4) and 6,7,5′‐trihydroxy‐5,3′,4′‐trimethoxy isoflavone (M5) by means of NMR and/or HPLC‐ESI‐MS. The structures of M6 and M7 were not elucidated because they produced no MS signals. The predominant metabolite M1 was noted to be a new compound. Interestingly, it was found to possess anticancer activity much higher than the parent compound. The enzymatic kinetic parameters of M1 revealed a sigmoidal profile, with Vmax = 12.02 μm /mg protein/min, Km = 37.24 μm , CLint = 0.32 μL/mg protein/min and h = 1.48, indicating the positive cooperation. For the first time in this work, a new metabolite of irisflorentin was found to demonstrate a much higher biological activity than its parent compound, suggesting a new avenue for the development of drugs from B. chinensis, which was also applicable for other herbal plants. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
Rafatro H Verbeeck RK Gougnard TY De Jonghe PJ Rasoanaivo P Laurent A Lhoëst G 《Journal of mass spectrometry : JMS》2000,35(9):1112-1120
Malagashanine has been isolated from indigenous madagascan Strychnos myrtoides alkaloids used traditionally to treat malaria. This alkaloid was found to enhance the action of chloroquine against chloroquine-resistant strains of Plasmodium falciparum when combined with classical antimalarial drugs (chloroquine, quinine). The present study was carried out in order to investigate by electrospray mass and tandem mass spectrometry and NMR spectroscopy the structure of two new metabolites isolated from rat urine and human liver microsomes. We were able to demonstrate the presence of two new metabolites of malagashanine corresponding to a malagashanine N-demethylated metabolite and to the oxidation of malagashanine in the alpha-position of the N-methyl group to produce a carbinolamine function. The latter metabolite may be subject to ring and open-chain tautomerism effects and dimeric species were detected in the electrospray mass spectrum. 相似文献
18.
In vitro drug metabolism study is an integral part of drug discovery process. In this report, we have described the application of LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high resolution (HR)-LC/MS for structural characterization of in vitro rat liver microsomal metabolites of antihistamine desloratadine. Five metabolites M1--M5 have been identified, including three hydroxylated metabolites M1--M3, one N-oxide M4 and one uncommon aromatized N-oxide M5. Accurate mass data have been obtained in both full scan and MSn mode support assignments of metabolite structures with reported mass errors less than 3 ppm. Online H/D exchange HR-LC/MS experiments provide additional evidence in differentiating hydroxylated metabolites from N-oxides. This study demonstrates the effectiveness of this approach in structural characterization of drug metabolites. 相似文献
19.
L-tetrahydropalmatine (L-THP) is an active alkaloid from Stephania ainiaca Diels. In order to compare the similarities and differences of microbial and mammalian metabolisms of L-THP, the microbial transformation by Penicillium janthinellum and metabolism in rats were investigated. Biotransformation of L-THP by Penicillium janthinellum AS 3.510 resulted in the formation of three metabolites. Their structures were identified as L-corydalmine, L-corypalmine and 9-O-desmethyl-L-THP, respectively, by comprehensive nuclear magnetic resonance and mass spectrometry (MS) analysis. Six metabolites (M1-M6) were detected from the in vivo study in rats and three of which (L-corydalmine, L-corypalmine and 9-O-desmethyl-L-THP) were identified as the same compounds as those obtained from microbial metabolism by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and comparison with reference standards obtained from microbial metabolism. The structures of the additional three metabolites were tentatively deduced as 2-O-desmethyl-L-THP and two di-O-demethylated L-THP by LC-MS/MS analysis. Time courses of microbial and rat metabolisms of L-THP were also investigated. 相似文献
20.
One of the challenges in metabolomic profiling of complex biological samples is to identify new and unknown compounds. Typically, standards are used to help identify metabolites, yet standards cannot be purchased or readily synthesized for many unknowns. In this work we present a strategy of using human liver microsomes (HLM) to metabolize known endogenous human metabolites (substrates), producing potentially new metabolites that have yet to be documented. The metabolites produced by HLM can be tentatively identified based on the associated substrate structure, known metabolic processes, tandem mass spectrometry (MS/MS) fragmentation patterns and, if necessary, accurate mass measurements. Once identified, these metabolites can be used as references for identification of the same compounds in complex biological samples. As a proof of principle, a total of 9 metabolites have been identified from individual HLM incubations using 5 different substrates. Each metabolite was used as a standard. In the analysis of human urine sample by liquid chromatography MS/MS, four spectral matches were found from the 9 microsome-produced metabolite standards. Two of them have previously been documented as endogenous human metabolites, the third is an isomer of a microsome-metabolite and the fourth compound has not been previously reported and is also an isomer of a microsome-metabolite. This work illustrates the feasibility of using microsome-based metabolism to produce metabolites of endogenous human metabolites that can be used to facilitate the identification of unknowns in biological samples. Future work on improving the performance of this strategy is also discussed. 相似文献