首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conjugate gradient method (CGM) based on the inverse algorithm is used to estimate the unknown fouling-layer profile on the inner wall of a pipe system using simulated temperature measurements taken within the pipe wall. It is assumed that no prior information is available about the functional form of the unknown profile. Therefore, the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined using the simulated exact and inexact temperature measurements. The results show that the excellent estimation of the fouling-layer profile can be obtained for the test case considered in this study. The technique presented in this study can be used in a warning system to call for pipe maintenance when the thickness of fouling exceeds a predefined criterion.  相似文献   

2.
本文在文献[2,3]的基础上,提出了一个解各向异性弹塑性中厚度板壳问题的有限元方法。考虑材料各向异性的特点,采用了Hill推广的Huber-Mises屈服准则;借用Owen的剪切修正系数,正确计及了叠层复合材料壳体的横向剪切效应;为了避免“自锁”现象,文中采用了9节点的Heterosis二次壳单元;特别是本文利用插值外推的思想,提出了一个带预测的弧长增量控制法,显著提高了确定变形路径的计算效率。几个数值算例表明本文给出的有限元方法对于各向异性中厚度板壳的弹塑性分析有较好的精度,尤其是对具有复杂变形路径的结构计算,收敛速度提高更快。  相似文献   

3.
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered.This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h = O(H 2),which can still maintain the asymptotically optimal accuracy.It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution,which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h.Hence,the two-level stabilized finite element method can save a large amount of computational time.Moreover,numerical tests confirm the theoretical results of the present method.  相似文献   

4.
求解不连续中厚板自由振动的微分容积单元法   总被引:2,自引:0,他引:2  
基于区域叠加原理和微分容积法,发展了一种新型的数值方法——微分容积单元法,用以分析具有不连续几何特征的中厚板的自由振动。根据板的不连续情况将其划分为若干单元,在每个单元内用微分容积法将控制微分方程离散成为一组线性代数方程.在相邻的单元连接处应用位移连续条件和平衡条件,引入边界约束条件后得到一套关于各配点位移的齐次线性代数方程,由此可导出求解系统固有频率的特征方程。本文用子空间迭代法求解特征方程,并以开孔板、混合边界条件板和突变厚度板为例研究了方法的收敛性和计算精度。  相似文献   

5.
本文建立了分析含随机材料参数并具厚度不均匀性的中厚板问题的随机边界元法,基于Taylor级数展开技术,分析和到广义位移的均值和一阶偏差的积分方程,其中将材料参数的随机性和厚度的不均匀性作为等效荷载处理,从而得到广义边界位移或面力的均值和协方差,并进一步求出部点广义位移和内力的均值和协方差,最后用本文方法计算了两个数例,并对所得结果进行了分析,探讨。  相似文献   

6.
A 20 — DOF hybrid stress element based upon Mindlin plate theory is developed using the optimization design method for thin and moderately thick plates. Numerical tests consist of the convergency and performance to the plates with arbitrary thickness and shape and of the ultimate thin plate problems.Projects Supported by the National Natural Science Foundation of China.  相似文献   

7.
本文提出了一种参数型动力模型修正的方法.因为这种方法与经典的逆特征值问题的提法是一致的,所以先建立起与逆问题等价的关于设计参数的非线性方程组,然后构造出可以用Newtow法求解的格式.数值仿真结果表明本文方法具有较好的收敛性和较高的计算精度.  相似文献   

8.
A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to (1) uniform and non-uniform tent-like temperature loading; and (2) combined axial compression and uniform temperature loading. The initial geometrical imperfection of plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the effects of rotary inertia and transverse shear deformation. The analysis uses a deflection-type perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick rectangular plates and are compared with the results predicted by the thin plate theory.  相似文献   

9.
基于有限元分析的特征值反问题求解的逆摄动方法   总被引:2,自引:0,他引:2  
本文研究特征值反问题的求解方法,根据广义特征值反问题理论和有限元法的特点,以转子系统平面梁单元有限元模型结构分析的特征值反问题求解为例,给出一种新的逆摄动方法,给出了本逆摄动法较完整的理论基础,给出了其逆摄动参数的显式计算公式及相应的取值方法,本逆摄动法也可推广到其他单元类型的有限元模型特征值反问题的求解。  相似文献   

10.
付朝江 《应用力学学报》2012,29(4):475-480,490
采用蒙特卡罗模拟(MCS)和加权积分法对二维问题进行随机有限元分析。尽管MCS方法对任何有确定解的问题都具有求解精度高的优点,但由于求解所需的计算量巨大使其应用受到限制。利用并行求解技术可有效地处理这种密集型计算问题。基于有限元分裂对接法(FETI)的并行特性并利用预处理共轭梯度法(PCG)的求解高效性,结合整体子区域实现(GSI-PCG)和FETI法,提出二级求解算法,并在工作站机群上实现了数值算例。算例计算结果表明本文GSI(PCG)-FETI算法具有较高的并行加速比和并行效率,具有良好的性能,可有效地进行二维问题的随机有限元分析。  相似文献   

11.
We present and analyse a new mixed finite element method for the generalized Stokes problem. The approach, which is a natural extension of a previous procedure applied to quasi‐Newtonian Stokes flows, is based on the introduction of the flux and the tensor gradient of the velocity as further unknowns. This yields a two‐fold saddle point operator equation as the resulting variational formulation. Then, applying a slight generalization of the well known Babu?ka–Brezzi theory, we prove that the continuous and discrete formulations are well posed, and derive the associated a priori error analysis. In particular, the finite element subspaces providing stability coincide with those employed for the usual Stokes flows except for one of them that needs to be suitably enriched. We also develop an a posteriori error estimate (based on local problems) and propose the associated adaptive algorithm to compute the finite element solutions. Several numerical results illustrate the performance of the method and its capability to localize boundary layers, inner layers, and singularities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Based on the potential-hybrid/mixed finite element scheme,4-node quadrilateralplate-bending elements MP4,MP4a and cylindrical shell element MCS4 are derived with,the inclusion of splitting rotations.All these elements demonstrate favorable convergencebehavior over the existing counterparts,free from spurious kinematic modes and do notexhibit locking phenomenon in thin plate/shell limit.Inter-connections between the existingmodified variational functionals for the use of formulating C~0-and C~1-continuous elementsare also indicated.Important particularizations of the present scheme include Prathap’sconsistent field formulation,the RIT/SRIT-compatible displacement model and so on.  相似文献   

13.
IntroductionAsakindofimportantthermalcharacteristicsofthematerial,thermalconductivitymustbedeterminedtomakequantificationalanalysisoftemperaturefield .Ithasbeentakendueattentiontoestimatethethermalconductivityfrominnerand/orboundarytemperaturemeasureme…  相似文献   

14.
对于较厚复合材料弯曲问题,已有锯齿型厚板理论最大误差超过35%。为了合理地分析较厚复合材料弯曲问题,发展了准确高效的锯齿型厚板理论。此理论位移变量个数独立于层合板层数,其面内位移不含有横向位移一阶导数,构造有限元时仅需C0插值函数,故称此理论为C0型锯齿厚板理论。基于发展的锯齿理论,构造了六节点三角形单元并推导了复合材料层合/夹层板弯曲问题有限元列式。为验证C0型锯齿厚板理论性能,分析了复合材料层合/夹层厚板弯曲问题,并与已有C1型锯齿理论对比。结果表明,本文的C0型锯齿厚板理论最大误差15%,比已有锯齿型厚板理论准确高效。  相似文献   

15.
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.  相似文献   

16.
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided ...  相似文献   

17.
Several numerical algorithms for solving inverse natural convection problems are revisited and studied. Our aim is to identify the unknown strength of a time‐varying heat source via a set of coupled nonlinear partial differential equations obtained by the so‐called finite element consistent splitting scheme (CSS) in order to get a good approximation of the unknown heat source from both the measured data and model results, by minimizing a functional that measures discrepancies between model and measured data. Viewed as an optimization problem, the solutions are obtained by means of the conjugate gradient method. A second‐order CSS in time involving the direct problem, the adjoint problem, the sensitivity problem and a system of sensitivity functions is used in order to enhance the numerical accuracy obtained for the unknown heat source function. A spatial discretization of all field equations is implemented using equal‐order and mixed finite element methods. Numerical experiments validate the proposed optimization algorithms that are in good agreement with the existing results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A sharp interface problem arising in the flow of two immiscible fluids, slag and molten metal in a blast furnace, is formulated using a two-dimensional model and solved numerically. This problem is a transient two-phase free or moving boundary problem, the slag surface and the slag–metal interface being the free boundaries. At each time step the hydraulic potential of each fluid satisfies the Laplace equation which is solved by the finite element method. The ordinary differential equations determining the motion of the free boundaries are treated using an implicit time-stepping scheme. The systems of linear equations obtained by discretization of the Laplace equations and the equations of motion of the free boundaries are incorporated into a large system of linear equations. At each time step the hydraulic potential in the interior domain and its derivatives on the free boundaries are obtained simultaneously by solving this linear system of equations. In addition, this solution directly gives the shape of the free boundaries at the next time step. The implicit scheme mentioned above enables us to get the solution without handling normal derivatives, which results in a good numerical solution of the present problem. A numerical example that simulates the flow in a blast furnace is given.  相似文献   

19.
Summary A finite element formulation is derived for the thermoelastic analysis of functionally graded (FG) plates and shells. The power-law distribution model is assumed for the composition of the constitutent materials in the thickness direction. The procedure adopted to derive the finite element formulation contains the analytical through-the-thickness integration inherently. Such formulation accounts for the large gradient of the material properties of FG plates and shells through the thickness without using the Gauss points in the thickness direction. The explicit through-the-thickness integration becomes possible due to the proper decomposition of the material properties into the product of a scalar variable and a constant matrix through the thickness. The nonlinear heat-transfer equation is solved for thermal distribution through the thickness by the Rayleigh-Ritz method. According to the results, the formulation accounts for the nonlinear variation in the stress components through the thickness especially for regions with a variation in martial propperties near the free surfaces.  相似文献   

20.
The common Prandtl-Reuss theory has been improved in this paper. A quasi-flow law of the isotropic hardening Mises materials has been proposed as well, on the basis of which, an efficient iterative algorithm of finite element analysis, hybrid / mixed vari-stiffness method, has been obtained. The numerical examples calculated by the plane stress / strain element model are given. Compared with the common initial stress method, the hybrid / mixed vari-stiffness method shows its advantages in the convergent speed, calculating accuracy and treatment scheme of the incompressibility of materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号