首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-hydroxy-3,5-pyridinedicarboxylic acid (DQ58) and 4-hydroxy-1-methyl-3,5-pyridinedicarboxylic acid (DQ71508) have been synthesized, and their Fe(III), Al(III), Cu(II), and Zn(II) coordination properties have been studied by potentiometry, UV–Vis spectroscopy (in the case of Fe(III), Al(III), Cu(II)), 1H-NMR (for Al(III)) and EPR (for Cu(II)). The thermodynamic results were used to model the extent of the toxic metal ions decorporation (Fe(III) or Al(III)) in the presence of the essential metal ions (Cu(II) or Zn(II)). DQ58 and DQ71508 were demonstrated to interact with human serum albumin (HSA), which is assumed to be the main serum transporter of the chelators, and binding constants have been obtained by ultrafiltration. IC50 values of 5.185 × 10?3 and 1.033 × 10?3 mol·L?1 were collected after 24 and 48 h of treatment with DQ71508 towards human embryonic kidney HEK-293 cells, demonstrating the relatively low cytotoxicity of this compound. According to these results, both DQ58 and DQ71508 seem to be potential candidates for Fe chelation therapy, and DQ58 is a better Fe(III) chelator than DQ71508.  相似文献   

2.
A new series of 14-membered pendant arm hexaazamacrocyclic complexes of the type [MLX2] · [M = Co(II), Ni(II), Cu(II) or Zn(II) for X = Cl; Co(II), Ni(II), Cu(II) or Zn(II) for X = NO3] has been synthesized by metal template condensation of 1,2-phenylenediamine and 1,4-phenylenediamine with formaldehyde in methanol. The mode of bonding and overall geometry of these complexes have been deduced by elemental analyses, molar conductance values, FT-IR, 1H-NMR, 13C-NMR, EPR, ESI-mass and UV–VIS along with magnetic measurement studies. The fluorescence and UV–VIS studies revealed a significant binding ability to DNA.  相似文献   

3.
We describe the synthesis and characterization of two novel azo ligands, 4,5-dihydroxy-3,6-bis(2-hydroxyphenylazo)-2,7 naphthalene disulfonic acid (H2L) and 4,5-dihydroxy-3,6-bis(2-hydroxy-4-sulfophenylazo)-2,7-naphthalenedisulfonic acid (H2L1). The Cu(II), Ni(II), and Co(II) complexes of these ligands were prepared and characterized by infrared, UV–Vis, 1H- and 13C-NMR spectra, atomic absorption spectroscopy, mass spectrometry, elemental analyses, thermogravimetric analysis, conductivity, cyclic voltammetry, and magnetic measurements. The results suggest that the complexes have a 2:1 (metal:ligand) molar ratio, involving binuclear azo ligands with an ONO donor set. Metal ion uptake studies were conducted with a batch technique. Preliminary histological studies were also made. The results indicate that the azo ligands have high thermal stability, good metal extraction capacity, and favorable dying properties with certain tissues.  相似文献   

4.
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV–vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern and Horowitz–Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H2O)4]·Cl2 and [Zn(LFX)(H2O)4]·Cl2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml.  相似文献   

5.
《Polyhedron》1987,6(7):1517-1521
Formation constants of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with 3-hydroxy-2-naphthalene carboxylic acid have been determined potentiometrically in a 50% (v/v) dioxane—water solution at 25°C and 0.2 M KNO3. Experimental data are analysed using several computer programs. The obtained values for the log of the formation constant of the first 1 : 1 (metal : ligand) complex with the different metals are: Co 7.9, Ni 7.1, Cu 10.44, Zn 7.8 and Cd 7.3. The log of the formation constant for the 1 : 2 copper complex is 18.20. It is to be noted that Ni(II) yields a 1 : 1 complex weaker than expected from the Irving—Williams series.  相似文献   

6.
Azo compounds were prepared by coupling of benzenediazonium chloride ions with 1-amino-2-hydroxy-4-naphthalene sulfonic acid under alkaline conditions, and Schiff bases, L1–3 were then obtained by the condensation of 1-amino-2-hydroxy-3-(phenylazo)-4-naphthalene sulfonic acid, 1-amino-2-hydroxy-3-(4-ethylphenylazo)-4-naphthalene sulfonic acid, and 1-amino-2-hydroxy-3-(4-nitrophenylazo)-4-naphthalene sulfonic acid with salicylaldehyde. New copper(II), nickel(II), and zinc(II) complexes of the Schiff base ligands were also prepared and characterized by spectroscopic methods, magnetic measurements, elemental, and thermogravimetric analysis.  相似文献   

7.
The equilibrium geometries, electronic structures, one- and two-photon absorption (TPA) properties of a series of octupolar complexes with the Cu(I), Zn(II) and Al(III) as coordinate centers and the bis-cinnamaldimine as ligands have been studied using the B3LYP/6-31G(d) and ZINDO-SOS methods. Compared with the dipolar metal complexes, all the octupolar metal complexes (including tetrahedral and octahedral complexes) have relatively large TPA cross-sections, indicating that building octupolar metal complex is an effective route to design of promising TPA material. Lewis acidity of metal center and molecular symmetry are two important factors for enhancement of TPA cross-section of metal complex. Due to the stronger Lewis acidity of Zn(II) than Cu(I) as well as Al(III) than Zn(II), the tetrahedral Zn(II) complex exhibits a TPA cross-section larger than that of the tetrahedral Cu(I) complex, the maximum TPA position of the octahedral Al(III) complex is red-shifted relative to the octahedral Zn(II) complex, and at the same time, the octahedral Al(III) complex has a large TPA cross-section. Compared with the tetrahedral complexes, the TPA cross-sections of the octahedral complexes are enhanced due to the increased number of ligands.  相似文献   

8.
The coordination chemistry of the new pyridine-based, N2S2-donating 12-membered macrocycle 2,8-dithia-5-aza-2,6-pyridinophane (L1) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been investigated both in aqueous solution and in the solid state. The protonation constants for L1 and stability constants with the aforementioned metal ions have been determined potentiometrically and compared with those of ligand L2, which contains a N-aminopropyl side arm. The measured values show that Hg(II) in water has the highest affinity for both ligands followed by Cu(II), Cd(II), Pb(II), and Zn(II). For each metal ion considered, 1:1 complexes with L1 have also been isolated in the solid state, those of Cu(II) and Zn(II) having also been characterised by X-ray crystallography. In both complexes L1 adopts a folded conformation and the coordination environments around the two metal centres are very similar: four positions of a distorted octahedral coordination sphere are occupied by the donor atoms of the macrocyclic ligand, and the two mutually cis-positions unoccupied by L1 accommodate monodentate NO3- ligands. The macrocycle L1 has then been functionalised with different fluorogenic subunits. In particular, the N-dansylamidopropyl (L3), N-(9-anthracenyl)methyl (L4), and N-(8-hydroxy-2-quinolinyl)methyl (L5) pendant arm derivatives of L1 have been synthesised and their optical response to the above mentioned metal ions investigated in MeCN/H2O (4:1 v/v) solutions.  相似文献   

9.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

10.
Azo compounds were prepared by the reaction between benzenediazonium chloride and 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid monosodium salt under alkaline conditions. Two new azo-linked Schiff base ligands, 4-(3-methoxysalicylidene)-5-hydroxy-6-(2-hydroxyphenylazo)-2,7-naphthalene disulfonic acid disodium salt (H2L) and 4-(3-methoxysalicylidene)-5-hydroxy-6-(2-hydroxy-4-cholorophenylazo)-2,7-naphthalenedisulfonic acid disodium salt (H2L1), have been synthesized. Also, the new CuII, NiII and CoII complexes of the azo-linked Schiff base ligands were prepared and characterized by infrared spectra, UV–Vis, 1H- and 13C-n.m.r., attached proton test (APT) and distortionless enhancement by polarization transfer (DEPT) and atomic absorption spectroscopy, mass spectrocopy, elemental analyses, thermogravimetric analysis, conductivity and magnetic measurements. It was determined that the synthesized ligands were comprised of six-membered rings due to intramolecular hydrogen bonding. The results suggested that condensation of the azo-derivative compounds and o-vanillin in a 1:1 molar ratio produces mononuclear Schiff base ligands with an ONO donor set. Preliminary histological studies were made. Magnetic moment studies showed that all complexes have a tetrahedral configuration.  相似文献   

11.
Divalent metal complexes of general formula [M(2-nb)2(mc)2].2(2-nbH), where M = Co(II), Ni(II), Cu(II) or Zn(II), 2-nbH = 2-nitrobenzoic acid and mc = methyl carbazate (NH2NHCOOCH3), have been prepared and characterized by physicochemical and spectroscopic methods. Single-crystal X-ray study of the Cu(II) complex revealed that the molecule is centrosymmetric, with two N,O-chelating mc ligands in equatorial positions and a pair of monodentate 2-nb anions in the axial positions. The lattice 2-nbH molecules help to establish the packing of monomers through hydrogen-bonding interactions. Thermal stability and reactivity of the complexes were studied by TG–DTA. Emission studies show that these complexes are fluorescent.  相似文献   

12.
The isatin-β-thiosemicarbazone (ITC) complexes of Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and Pd(II) were prepared and characterized by elemental analysis, as well as molar conductivity, magnetic susceptibility, FTIR, UV-Vis and 1H NMR spectroscopic methods. The complexes were also studied for its thermal stability. They all behaviour as anhydrous complexes and its thermolysis passes through the stages of deamination (517–547 K) and complete thermal decomposition (619–735 K).  相似文献   

13.
The stoichiometry and stability constant of metal complexes with 4-(3-methoxy-salicylideneamino)-5-hydroxynaphthalene-2,7-disulfonic acid monosodium salt (H2L) and 4-(3-methoxysalicylideneamino)-5-hydroxy-6-(2,5-dichlorophenylazo)-2,7-naphthalene disulfonic acid monosodium salt (H2L1) were studied by potentiometric titration. The stability constants of H2L and H2L1 Schiff bases have been investigated by potentiometric titration and u.v.–vis spectroscopy in aqueous media. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 °C and 0.1 m KCl ionic strength. The dissociation constants for H2L were obtained as 3.007, 7.620 and 9.564 and for H2L1, 4.000, 6.525, 9.473 and 10.423, respectively. The complexes were found to have the formulae [M(L)2] for M = Co(II), Ni(II), Zn(II) and Cu(II). The stability of the complexes follows the sequence: Zn(II) < Co(II) < Cu(II) < Ni(II). The high stability of H2L1 towards Cu(II) and Ni(II) over the other ions is remarkable, in particular over Cu(II), and may be of technological interest. Concentration distribution diagram of various species formed in solution was evaluated for ligands and complexes. The formation of the hydrogen bonds may cause this increased stability of ligands. The pH-metric data were used to find the stoichiometry, deprotonation and stability constants via the SUPERQUAD computer program.  相似文献   

14.
A new fluorene ligand, benzo[15-crown-5]-5H-pyrido[3′,2′:4,5]cylopenta[1,2-b]pyridin-5-ylidenehydrazone (bph), has been synthesized from the reaction of 4,5-diazafluoren-9-one with 4′-formylbenzo-15-crown-5. The Co(II), Cu(II), and Ru(II) complexes of the ligand were prepared and characterized. The metal-to-ligand ratio of the Co(II) and Cu(II) complexes was found to be 2:1 and that of the Ru(II) complex was found to be 1:1. The ligand and complexes have been characterized by FTIR, UV–visible, 1H NMR and fluorescence spectra, as well as elemental analyses and mass spectra.  相似文献   

15.
New transition metal complexes of Co(II), Cu(II), Ni(II), and Fe(III) of the ligands 6,6′-(1E,1′E)-(4,5-dimethyl-1,2-phenylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L1 and 6,6’-(1E,1′E)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L2 have been prepared and characterized using physio-chemical and spectroscopic methods. The results obtained for the complexes indicated that the geometries of the metal centres are either square planar or octahedral. Cyclopropanation reactions of unactivated olefins by ethyldiazoacetate (EDA) in the presence of [L1Cu]·H2O, [L2Cu]·2H2O and [L2*Co]·2H2O as catalysts were examined. The results showed that only [L2*Co]·2H2O can act as a catalyst for the cyclopropanation reaction of unactivated olefins with very high selectivity (up to 99% based on EDA).  相似文献   

16.
Four novel mixed-ligand complexes of Co(II), Ni(II), Cu(II), and Zn(II) with m-hydroxybenzoate (m-Hba) and N,N-diethylnicotinamide (Dena) were synthesized and characterized on the basis of elemental analysis, FT-IR spectroscopic study, and solid state UV-Vis spectrophotometric and magnetic-susceptibility data. The thermal behavior of the complexes was studied by combined TG-DTA methods in static air atmosphere, and the mass spectra were recorded. The Co(II), Ni(II), and Zn(II) complexes, except for the Cu(II) complex, contain two molecules of coordinated water, two m-Hba, and two Dena ligands per formula unit. In these complexes, the m-Hba and Dena behave as monodentate ligands via acidic oxygen and nitrogen of the pyridine ring. In the Cu(II) complex, the m-Hba is coordinated as monoanionic bidentate ligand through acidic oxygen and carbonyl oxygen. Dena is bonded with Cu2+ as monodentate ligand by the nitrogen atom of the pyridine ring. The decomposition pathways and the stability of the complexes are interpreted in terms of the proposed structural data. The final decomposition products were found to be the respective metal oxides. The article was submitted by the authors in English.  相似文献   

17.
Yoshino T  Murakami S  Kagawa M 《Talanta》1974,21(3):199-209
Potentiometric and spectrophotometric studies on Semi-Methylthymol Blue (SMTB or H(4)L) have been performed. The acid-base and Co(II), Ni(II), Cu(II) and Zn(II)-ligand reaction stoichiometries were determined, and the formation constants of the corresponding proton and metal complexes, and the molar absorptivities were calculated. Evidence was found for the formation of 1:1 Co(II), Ni(II) and Cu(II) complexes, and 1:1 and 1:2 Zn(II) complexes. Cu(II) formed the hydroxo-complex, Cu(OH)L(3-), but no hydroxo-complexes of the other metal ions were observed. Suggestions are made concerning the probable structure of the complexes.  相似文献   

18.
Three complexes, namely Zn(BDC-Cl4)(py)3 (1), Cu(BDC-Cl4)(py)3 (2) and Cd(BDC-Cl4)(py)3 (3) (BDC-Cl4 = 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate, py = pyridine) have been synthesized. Complexes (1) and (2) have been obtained using solvothermal methods. Both have a five-coordinate geometry with two bridging monodentate tetrachloroterephthalate ligands and three pyridine ligands coordinated to the Zn(II) or Cu(II) atom. The tetrachloroterephthalate ligands bridge the adjacent Zn(II) or Cu(II) centers, giving zigzag chains. Complex (3) has also been crystallized, each Cd(II) atom is six-coordinated to three carboxylate oxygen atoms and three pyridyl nitrogen atoms. Two types of tetrachloroterephthalate ligand, featuring monodentate and bidentate carboxylates, connect the Cd(II) centers to form zigzag chains. All three complexes have been subjected to thermogravimetric analysis.  相似文献   

19.
Azo Schiff base ligand 2-hydroxy-3-methoxy-5-(tolyldiazenyl)benzaldehyde oxime (HL1) and 2-hydroxy-3-methoxy-5-(methoxyphenyl)benzaldehyde oxime (HL2) were prepared along with their transition metal complexes of Ni(II), Cu(II), and Zn(II). Ligands and their metal complexes were characterized by several analysis techniques. In- vitro antibacterial, antioxidant and anti-inflammatory activities of synthesized ligands and their metal complexes have been studied. Biological study showed that amongst all the synthesized compounds, Cu(II) complexes possessed excellent antibacterial activity than standard antibiotic Chloramphenicol. Ligands (HL1) and (HL2) showed excellent antioxidant as well as anti-inflammatory activity. Both the ligands were tested for their protective effect of free radicals against plasmid DNA and it was found that both the ligands showed good DNA nicking activity.  相似文献   

20.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of [S,S,S]- and [R,S,R]-isomers of N-bis[2-(1,2-dicarboxyethoxy)ethyl] aspartic acid (BCA6) with Mg(II), Ca(II), Mn(II), Fe(III), Cu(II) and Zn(II) ions in aqueous 0.1 M NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions (M n+), stable ML n?6 complexes dominated complex formation for both isomers. Differences in complexation models were found for binuclear species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号