首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in L p . It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier L -setting is analyzed, but also a more involved L q -analysis, q < ∞, is presented. In L , the set of feasible controls contains interior points and the Fréchet differentiability of the perturbed optimality system can be shown. In the L q -setting, which is highly relevant for PDE-constrained optimization, these nice properties are no longer available. Nevertheless, a convergence analysis is developed using refined techniques. In parti- cular, two-norm techniques and a smoothing step are required. The L q -analysis with smoothing step yields global linear and local superlinear convergence, whereas the L -analysis without smoothing step yields only global linear convergence.  相似文献   

2.
给出线性规划原始对偶内点算法的一个单变量指数型核函数.首先研究了这个指数型核函数的性质以及其对应的障碍函数.其次,基于这个指数型核函数,设计了求解线性规划问题的原始对偶内点算法,得到了目前小步算法最好的理论迭代界.最后,通过数值算例比较了基于指数型核函数的原始对偶内点算法和基于对数型核函数的原始对偶内点算法的计算效果.  相似文献   

3.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

4.
In this paper we propose primal-dual interior-point algorithms for semidefinite optimization problems based on a new kernel function with a trigonometric barrier term. We show that the iteration bounds are $O(\sqrt{n}\log(\frac{n}{\epsilon}))$ for small-update methods and $O(n^{\frac{3}{4}}\log(\frac{n}{\epsilon}))$ for large-update, respectively. The resulting bound is better than the classical kernel function. For small-update, the iteration complexity is the best known bound for such methods.  相似文献   

5.
This work examines the generalization of a certain interior-point method, namely the method of analytic centers, to semi-infinite linear programming problems. We define an analytic center for these problems and an appropriate norm to examine Newton's method for computing this center. A simple algorithm of order zero is constructed and a convergence proof for that algorithm is given. Finally, we describe a more practical implementation of a predictor-corrector method and give some numerical results. In particular we concentrate on practical integration rules that take care of the specific structure of the integrals.  相似文献   

6.
We develop an interior-point polynomial-time algorithm for a generalized linear-fractional problem. The latter problem can be regarded as a nonpolyhedral extension of the usual linear-fractional programming; typical example (which is of interest for control theory) is the minimization of the generalized eigenvalue of a pair of symmetric matrices linearly depending on the decision variables.  相似文献   

7.
We develop an affine-scaling algorithm for box-constrained optimization which has the property that each iterate is a scaled cyclic Barzilai–Borwein (CBB) gradient iterate that lies in the interior of the feasible set. Global convergence is established for a nonmonotone line search, while there is local R-linear convergence at a nondegenerate local minimizer where the second-order sufficient optimality conditions are satisfied. Numerical experiments show that the convergence speed is insensitive to problem conditioning. The algorithm is particularly well suited for image restoration problems which arise in positron emission tomography where the cost function can be infinite on the boundary of the feasible set. This material is based upon work supported by the National Science Foundation under Grants 0203270, 0619080, and 0620286.  相似文献   

8.
We present an interior-point method for a class of fractional programs with convex constraints. The proposed algorithm converges at a polynomial rate, similarly as in the case of a convex problem, even though fractional programs are only pseudo-convex. Here, the rate of convergence is measured in terms of the area of two-dimensional convex setsC k containing the origin and certain projections of the optimal points, and the area ofC k is reduced by a constant factorc < 1 at each iteration. The factorc depends only on the self-concordance parameter of a barrier function associated with the feasible set. We present an outline of a practical implementation of the proposed method, and we report results of some preliminary numerical experiments.Corresponding author.  相似文献   

9.
A method introduced recently by Bellavia, Macconi and Morini for solving square nonlinear systems with bounds is modified and extended to cope with the underdetermined case. The algorithm produces a sequence of interior iterates and is based on globalization techniques due to Coleman and Li. Global and local convergence results are proved and numerical experiments are presented.  相似文献   

10.
We propose a first-order interior-point method for linearly constrained smooth optimization that unifies and extends first-order affine-scaling method and replicator dynamics method for standard quadratic programming. Global convergence and, in the case of quadratic program, (sub)linear convergence rate and iterate convergence results are derived. Numerical experience on simplex constrained problems with 1000 variables is reported.  相似文献   

11.
Ill-posed problems are numerically underdetermined. It is therefore often beneficial to impose known properties of the desired solution, such as nonnegativity, during the solution process. This paper proposes the use of an interior-point method in conjunction with truncated iteration for the solution of large-scale linear discrete ill-posed problems with box constraints. An estimate of the error in the data is assumed to be available. Numerical examples demonstrate the competitiveness of this approach.  相似文献   

12.
We present an interior-point method for a family of multi-fractional programs with convex constraints. The programs under consideration consist of minimizing the maximum of a finite number of linear fractions over some convex set. First, we present a simple shortstep algorithm for solving such multifractional programs, and we show that, under suitable assumptions, the convergence of the short-step algorithm is weakly polynomial in a sense specified below. Then, we describe a practical implementation of the proposed method, and we report results of numerical experiments with this algorithm. These results suggest that the proposed method is a viable alternative to the standard Dinkelbach-type algorithms for solving multifractional programs.The authors would like to thank Professor A. S. Nemirovsky for stimulating discussions via electronic mail. We are grateful to two anonymous referees for comments and suggestions that improved our paper.  相似文献   

13.
Euclidean Jordan algebras were proved more than a decade ago to be an indispensable tool in the unified study of interior-point methods. By using it, we generalize the full-Newton step infeasible interior-point method for linear optimization of Roos [Roos, C., 2006. A full-Newton step O(n) infeasible interior-point algorithm for linear optimization. SIAM Journal on Optimization. 16 (4), 1110-1136 (electronic)] to symmetric optimization. This unifies the analysis for linear, second-order cone and semidefinite optimizations.  相似文献   

14.
We present an interior-point penalty method for nonlinear programming (NLP), where the merit function consists of a piecewise linear penalty function and an ? 2-penalty function. The piecewise linear penalty function is defined by a set of break points that correspond to pairs of values of the barrier function and the infeasibility measure at a subset of previous iterates and this set is updated at every iteration. The ? 2-penalty function is a traditional penalty function defined by a single penalty parameter. At every iteration the step direction is computed from a regularized Newton system of the first-order equations of the barrier problem proposed in Chen and Goldfarb (Math Program 108:1?C36, 2006). Iterates are updated using a line search. In particular, a trial point is accepted if it provides a sufficient reduction in either of the penalty functions. We show that the proposed method has the same strong global convergence properties as those established in Chen and Goldfarb (Math Program 108:1?C36, 2006). Moreover, our method enjoys fast local convergence. Specifically, for each fixed small barrier parameter???, iterates in a small neighborhood (roughly within o(??)) of the minimizer of the barrier problem converge Q-quadratically to the minimizer. The overall convergence rate of the iterates to the solution of the nonlinear program is Q-superlinear.  相似文献   

15.
A new method for obtaining an initial feasible interior-point solution to a linear program is presented. This method avoids the use of a big-M, and is shown to work well on a standard set of test problems. Conditions are developed for obtaining a near-optimal solution that is feasible for an associated problem, and details of the computational testing are presented. Other issues related to obtaining and maintaining accurate feasible solutions to linear programs with an interior-point method are discussed. These issues are important to consider when solving problems that have no primal or dual interior-point feasible solutions.  相似文献   

16.
Mathematical Programming - In this paper, we propose a primal-dual path following method for nonlinear semi-infinite semi-definite programs with infinitely many convex inequality constraints,...  相似文献   

17.
 Based on the work of the Nesterov and Todd on self-scaled cones an implementation of a primal-dual interior-point method for solving large-scale sparse conic quadratic optimization problems is presented. The main features of the implementation are it is based on a homogeneous and self-dual model, it handles rotated quadratic cones directly, it employs a Mehrotra type predictor-corrector extension and sparse linear algebra to improve the computational efficiency. Finally, the implementation exploits fixed variables which naturally occurs in many conic quadratic optimization problems. This is a novel feature for our implementation. Computational results are also presented to document that the implementation can solve very large problems robustly and efficiently. Received: November 18, 2000 / Accepted: January 18, 2001 Published online: September 27, 2002 Key Words. conic optimization – interior-point methods – large-scale implementation  相似文献   

18.
In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters.The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step.Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm.Mathematics Subject Classification (1991): 65K05, 90C06, 90C29, 90C30Support for this author was provided by CRPC grant CCR–9120008.Support for this author was provided by CRPC grant CCR–9120008.Support for this author was provided by Centro de Matemática da Universidade de Coimbra, by FCT under grant POCTI/35059/MAT/2000, by the European Union under grant IST-2000-26063, and by Fundaç\ ao Calouste Gulbenkian. The author would also like to thank the IBM T.J. Watson Research Center and the Institute for Mathematics and Its Applications for their local support.  相似文献   

19.
We propose a new primal-dual infeasible interior-point method for symmetric optimization by using Euclidean Jordan algebras. Different kinds of interior-point methods can be obtained by using search directions based on kernel functions. Some search directions can be also determined by applying an algebraic equivalent transformation on the centering equation of the central path. Using this method we introduce a new search direction, which can not be derived from a usual kernel function. For this reason, we use the new notion of positive-asymptotic kernel function which induces the class of corresponding barriers. In general, the main iterations of the infeasible interior-point methods are composed of one feasibility and several centering steps. We prove that in our algorithm it is enough to take only one centering step in a main iteration in order to obtain a well-defined algorithm. Moreover, we conclude that the algorithm finds solution in polynomial time and has the same complexity as the currently best known infeasible interior-point methods. Finally, we give some numerical results.  相似文献   

20.
In this paper, we deal with primal-dual interior point methods for solving the linear programming problem. We present a short-step and a long-step path-following primal-dual method and derive polynomial-time bounds for both methods. The iteration bounds are as usual in the existing literature, namely iterations for the short-step variant andO(nL) for the long-step variant. In the analysis of both variants, we use a new proximity measure, which is closely related to the Euclidean norm of the scaled search direction vectors. The analysis of the long-step method depends strongly on the fact that the usual search directions form a descent direction for the so-called primal-dual logarithmic barrier function.This work was supported by a research grant from Shell, by the Dutch Organization for Scientific Research (NWO) Grant 611-304-028, by the Hungarian National Research Foundation Grant OTKA-2116, and by the Swiss National Foundation for Scientific Research Grant 12-26434.89.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号