首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
We have investigated the behaviour of an atom-cavity system via a stimulated Raman adiabatic passage technique in a four-level system, in which two dark states are present. We find, because of the coherent control field, that a superposition of Fock states can be prepared, even when the cavity is initially not in its vacuum state. This method provides a way to generate arbitrary quantum states of a cavity field.  相似文献   

2.
By using the theory of cavity QED, we study the system in which a two-level atom interacts with a cavity in the case of large detuning. Through the selective detecting of atomic state, Schrodinger cat states and entangled coherent states are easily generated. When the atom is driven by a weak classical field and the cavity field is in the Schrodinger cat state, we study the conditions of generating the Fock states and the maximal success probability. The maximal success probability in our scheme is larger than the previous one.  相似文献   

3.
郑仕标 《中国物理 B》2010,19(4):44203-044203
This paper proposes a scheme for generating arbitrary superpositions of several coherent states along a straight line for a cavity mode. In the scheme, several atoms are sent through a cavity initially in a strong coherent state. The superposition of several coherent states with desired coefficients may be generated if each atom is detected in the excited state after it exits the cavity. The scheme is based on resonant atom--cavity interaction and no classical field is required during and after the atom--cavity interaction. Thus, the scheme is very simple and the interaction time is very short, which is important in view of decoherence.  相似文献   

4.
Emission spectra of a (?)-type three-level atom in a Kerr medium   总被引:1,自引:0,他引:1  
We investigate the emission spectra of a (?)-type three-level atom interacting with a single-mode optical field in an ideal cavity filled with a Kerr medium and discuss the structure of emission spectrum when the optical field is initially in a pure number state and a coherent state, respectively. It is shown that the structure of emission spectrum depends not only on the photon number distribution, but also on the strength of incident field and the coupling of Kerr medium to the field.  相似文献   

5.
We propose a scheme for testing the small violations of the symmetrization postulate (SP) for photons in cavity QED. In the scheme, a degenerate A-type three-level atom is sent through a cavity field initially in a q-deformed coherent state. After an appropriate interaction time, the atom is measured by a state-selective detector. The probability that the atom makes a transition from one of the lower states to the other characterizes the violation of the SP. In the scheme, only one atom is required and classical fields are unnecessary, which is prior to the previous schemes.  相似文献   

6.
周青春  祝世宁 《中国物理》2005,14(2):336-342
The position- and momentum-entopic squeezing properties of the optical field in the system of a nearly degenerate three-level atom interacting with a single-mode field are investigated. Calculation results indicate that when the field is initially in the vacuum state, it may lead to squeezing of the position entropy or the momentum entropy of the field if the atom is prepared properly. The effects of initial atomic state and the splitting of the excited levels of the atom on field entropies are discussed in this case. When the initial field is in a coherent state, we find that position-entropy squeezing of the field is present even if the atom is prepared in the ground state. By comparing the variance squeezing and entropy squeezing of the field we confirm that entropy is more sensitive than variance in measuring quantum fluctuations.  相似文献   

7.
郑仕标 《中国物理 B》2008,17(6):2143-2146
This paper proposes a scheme for the generation of entangled coherent states for two cavity modes. In the scheme a V-type three-level atom is sent through a two-mode cavity filled with a coherent field. After the atom cavity interaction and detection of the atomic state the cavity modes may evolve to a superposition of two-mode coherent states. As the scheme is based on resonant atom-cavity interaction, the required interaction time is short, which is important in view of the decoherence. Moreover, additional classical pulses are unnecessary before and after the atom-cavlty interaction.  相似文献   

8.
杨榕灿  李洪才  林秀  陈美香 《中国物理》2006,15(10):2320-2323
We propose a scheme to implement the Deutsch-Jozsa algorithm by using Schroedinger cat states in cavity quantum electron-dynamics (QED). The scheme is based on the Raman interaction of a degenerate three-level A-type atom with a coherent state in a cavity. By using Schroedinger cat states, the atomic spontaneous emission can be minimized and the Hadamard transformation in our scheme is not needed.  相似文献   

9.
A scheme for preparing two and four atom entangled states is presented. It is based on atom cavity field interactions. Firatly, the cavity is prepared in the superposition of the number states through the atom undergoing a two photon transition, the secondly, the two or four identical two level atoms, which are all initially in their ground states, are sent through the cavity sequentially and can make resonant single photon transition in the cavity. Then atomic entangled states are created and the cav  相似文献   

10.
张智明  於亚飞 《中国物理 B》2008,17(4):1242-1247
The Raman-coupled interaction between an atom and a single mode of a cavity field is studied. For the cases in which a light field is initially in a coherent state and in a thermal state separately, we have derived the analytic expressions for the time evolutions of atomic population difference W, modulus B of the Bloch vector, and entropy E. We find that the time evolutions of these quantities are periodic with a period of π. The maxima of W and B appear at the scaled interaction time points τ- = kπ(k = 0, 1, 2,...). At these time points, E = 0, which shows that the atom and the field are not entangled. Between these time points, E ≠ 0, which means that the atom and the field are entangled. When the field is initially in a coherent state, near the maxima, the envelope of W is a Gaussian function with a variance of 1/(4n^-)(n^- is the mean number of photons). Under the envelope, W oscillates at a frequency of n^-/π. When the field is initially in a thermal state, near the maxima, W is a Lorentz function with a width of 1/n^-.  相似文献   

11.
R Pakniat  M K Tavassoly  M H Zandi 《中国物理 B》2016,25(10):100303-100303
We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement(quasiBSM) methods. The atom–field interaction in the cavity QED method is performed in small and large detuning regimes.We assume two atoms are initially entangled together and, distinctly two cavities are prepared in an entangled coherent–coherent state. In this scheme, we want to transform entanglement to the atom-field system. It is observed that, the fidelities of the swapped entangled state in the quasi-BSM method can be compatible with those obtained in the small and large detuning regimes in the cavity QED method(the condition of this compatibility will be discussed). In addition, in the large detuning regime, the swapped entangled state is obtained by detecting and quasi-BSM approaches. In the continuation,by making use of the atom–field entangled state obtained in both approaches in a large detuning regime, we show that the atomic as well as field states teleportation with complete fidelity can be achieved.  相似文献   

12.
We present a scheme in which the N-atom W state is teleported by employing the selective interaction of a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the ground states. The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through a cavity successively and atom A is then detected. The advantage is that the present one does not involve the Bell-state measurement and is robust against the atomic spontaneous emission.  相似文献   

13.
唐慧琴  李绍新  唐英  郑小娟  朱开成 《中国物理 B》2013,22(2):20310-020310
The evolution of a system state is derived based on the nonresonant interaction of a three-level "Λ" type atom with two cavity modes at a pair coherent state and two classic fields, and a cavity field state is analysed in detail under conditional detecting. It is found that the quantized modified Bessel-Gaussian states as well as the superposition states consisting of the quantized vortex states with different weighted coefficients may be prepared through carefully preparing an initial atomic state and appropriately adjusting the interaction time. The scheme provides an additional choice to realize the two-mode quantized vortex state within the context of cavity quantum electrodynamics (QED).  相似文献   

14.
The evolution of a system state is derived based on the nonresonant interaction of a three-level "Λ" type atom with two cavity modes at a pair coherent state and two classic fields,and a cavity field state is analyzed in detail under conditional detecting.It is found that the quantized modified Bessel-Gaussian states as well as the superposition states consisting of the quantized vortex states with different weighted coefficients may be prepared through carefully preparing an initial atomic state and appropriately adjusting the interaction time.The scheme provides an additional choice to realize the two-mode quantized vortex state within the context of cavity quantum electrodynamics(QED).  相似文献   

15.
Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation,we explore the entanglement dynamics of the two atoms prepared in different states using concurrence.Interestingly,our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly,and then keeps steady in the following time or always has its maximum when prepared in some special Bell states.The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavity.  相似文献   

16.
卢道明 《中国物理 B》2011,20(3):30301-030301
Considering three two-level atoms initially in the W or Greenberger--Horne--Zeilinger (GHZ) state, one of the three atoms is put into an initially coherent light cavity and made to resonantly interact with the cavity. The two-atom entanglement evolution outside the cavity is investigated. The influences of state-selective measurement of the atom inside the cavity and strength of the light field on the two-atom entanglement evolution outside the cavity are discussed. The results obtained from the numerical method show that the two-atom entanglement outside the cavity is strengthened through state-selective measurement of the atom inside the cavity. In addition, the strength of the light field also influences the two-atom entanglement properties.  相似文献   

17.
A method is presented for generating highly squeezed states of a cavity field via the atom-cavity field interaction of the Raman type.In the scheme a sequence of three-level Λ-type atoms interacts with a cavity field,displaced by a classical source,in a Raman manner.Then the atomic states are measured.By this way the cavity field may collapse onto a superposition of several coherent states,which exhibits strong squeezing.The scheme can also be used to prepare superpositions of many two-mode coherent states for two cavity fields.The coherent states in each mode are on a straight line.This is the first way for preparing multi-component entangled coherent states of this type in cavity QED.  相似文献   

18.
We discuss the generation of certain kinds of multi-component entangled states for three-level atomic system with hyperfine structure. The method proposed here is based on the interactions of dispersive cavity with only one atom driven by a strong classical field. It is shown that, with a judicious choice of the cavity detuning and applied coherent field detuning, the atom can interact dispersively with the quantized field but the classical driving field gives rise to the creation or destruction of photons conditional on the state of the system. In comparison with previous schemes,our method is likely to be extremely easy to realize in practice  相似文献   

19.
We study the properties of the atoms and cavity field in the Tavis-Cummings Model where the two atoms interact each other and also are driven by an external classical field.We consider the special case that the cavity is initially in a coherent state.After work out the atomic inversion, the average photons number and the Mandel parameter in the driven Tavis-Cummings Model, we do numerical analysis of them, and pay special attention to the dynamical behavior of the atoms and the cavity field modified by the external field.  相似文献   

20.
We investigate the transmission probability of an ultracold V-type three-level atom passing through a micromaser cavity,in the presence of atomic coherence which is established by a coherent driving field.We show that the transmissibility of this micromaser system with the atomic coherence is better than that of the ordinary micromaser system without atomic coherence.When the driving field is strong enough,for any cavity length the ultracold atom can pass through the micromaser cavity freely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号