首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity [Jiang, Y., Liu, M., 2003. Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91, 144301] and rate-sensitive fluid-like flow [Jop, P., Forterre, Y., Pouliquen, O., 2006. A constitutive law for dense granular flows. Nature 441, 727] are reformulated and combined into one universal elasto-plastic law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry. The unification is performed by justifying and implementing a Kröner–Lee decomposition, with care taken to ensure certain continuum physical principles are necessarily upheld. The model is then numerically implemented in multiple geometries and results are compared to experiments and discrete simulations.  相似文献   

2.
3.
The flow of granular materials between rotating cylinders is studied using a continuum model proposed by Rajagopal and Massoudi (A method for measuring material moduli for granular materials: flow in an orthogonal rheometer, DOE/PETC/TR90/3, 1990). For a steady, fully developed condition, the governing equations are reduced to a system of coupled non-linear ordinary differential equations. The resulting boundary value problem is non-dimensionalized and is then solved numerically. The effect of material parameters, i.e., dimensionless numbers on the volume fraction and the velocity fields are studied.  相似文献   

4.
The relationship between critical state and particle shape corresponds to the most fundamental aspect of the mechanics of granular materials. This paper presents an investigation into this relationship through macro-scale and micro-scale laboratory experiments in conjunction with interpretation and analysis in the framework of critical state soil mechanics. Spherical glass beads and crushed angular glass beads of different percentages were mixed with a uniform quartz sand (Fujian sand) to create a sequence of mixtures with varying particle shape. On the micro-scale, particle shape was accurately measured using a laser scanning technique, and was characterized by aspect ratio, sphericity and convexity; a new shape index, taken as the average of the three shape measures and referred to as overall regularity, was proposed to provide a collective characterization of particle shape. On the macro-scale, both undrained and drained triaxial tests were carried out to provide evidence that varying particle shape can alter the overall response as well as the critical states in both stress space and volumetric compression space. The mixtures of Fujian sand and spherical glass beads were found to be markedly more susceptible to liquefaction than the mixtures of Fujian sand and crushed angular glass beads. The change in liquefaction susceptibility was shown to be consistent with the change in the position of the critical state locus (CSL) in the compression space, manifested by a decrease in the intercept and gradient of the CSL due to the presence of spherical glass beads. Quantitative relationships have been established between each of the critical state parameters and each of the shape parameters, thereby providing a way to construct macro-scale constitutive models with intrinsic micro-scale properties built in.  相似文献   

5.
We study the shearing flow of granular materials between two horizontal flat plates where the top plate is moving with a constant speed. The constitutive relation used for the stress is based on the continuum model proposed by Rajagopal and Massoudi (DOE Report, DOE/PETC/TR-90/3, 1990). The material coefficients such as viscosity and normal stress coefficients are based on the model of Boyle and Massoudi (Int. J. Eng. Sci 28 (1990) 1261). The governing equations are non-dimensionalized and the resulting system of non-linear differential equations is solved numerically using finite difference technique.  相似文献   

6.
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow, the solid-particle‘s governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.  相似文献   

7.
A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress-strain subloops and tension-compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.  相似文献   

8.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

9.
The USM-θmodel of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θmodel in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θmodel has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θmodel was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.  相似文献   

10.
Fully-developed steady flow of granular material down an inclined chute has been a subject of much research interest, but the effect of the interstitial gas has usually been ignored. In this paper, new expressions for the drag force and energy dissipation caused by the interstitial gas (ignoring the turbulent fluctuations of the gas phase) are derived and used to modify the governing equations derived from the kinetic theory approach for granular–gas mixture flows, where particles are relatively massive so that velocity fluctuations are caused by collisions rather than the gas flow. This new model is applied to fully-developed, steady mixture flows down an inclined chute and the results are compared with other simulations. Our results show that the effect of the interstitial gas plays a significant role in modifying the characteristics of fully developed flow. Although the effect of the interstitial gas is less pronounced for large particles than small ones, the flowfields with large particles are still very different from granular flows which do not incorporate any interactions with the interstitial gas.  相似文献   

11.
The multi-scale micromorphic theory developed in our previous paper [Vernerey, F.J., Liu, W.K., Moran, B., 2007. Multi-scale micromorphic theory for hierarchical materials. J. Mech. Phys. Solids, doi:10.1016/j.jmps.2007.04.008] is used to predict the failure of heterogeneous materials illustrated by a high strength steel alloy possessing two populations of hard particles distributed at two distinct length scales in an alloy matrix. To account for the effect and size of microstructural features during fracture, additional kinematic variables are added, giving rise to the couple stresses associated with each population of particles. The various stress and strain measures must satisfy a set of coupled multi-scale governing equations derived from the principle of virtual power. A three-scale constitutive model is then developed to represent the failure of the alloy from nucleation, growth and coalescence of voids from each population of particles. For this, three distinct yield functions, each corresponding to a different scale, are introduced. Cell model simulations using finite elements are performed to determine the constitutive relations based on the key microstructural features. Two-dimensional failure analyses are then presented in tension and in shear, and show good agreement with direct numerical simulation of the microstructure.  相似文献   

12.
We investigate four crucial properties for testing and evaluating a moment closure approximation of the FENE dumbbell model for dilute polymer solutions: non-negative configuration distribution function, energy dissipation, accuracy of approximation and computational expense. Through mathematical analysis, numerical experiments and comparisons with closure model FENE-P and FENE-YDL, we prove that the FENE-QE approximation has non-negative configuration distribution function, approximates the energy dissipation behavior of original kinetic theory and provides good accuracy. To improve the efficiency of this closure approximation, we introduce a piecewise linear approximation technique that greatly reduces the computational cost. This extension of FENE-QE, FENE-QE-PLA, is the closure model we recommend for simulating dilute polymer solutions.  相似文献   

13.
A review of the globally subcritical transition to turbulence in shear flows is presented, with an emphasis on the cases of plane and circular Couette flows (pCf and cCf, respectively). A Swift–Hohenberg-like model is next proposed to interpret the behavior of plane Couette flow in the vicinity of its global stability threshold. We present results of numerical simulations supporting this proposal and helping us to raise good questions about the growth and decay of intermittent turbulent domains in this precise context, and more generally about the coexistence of laminar flow and turbulence in other spatio-temporally intermittent flows. PACS 47.27.-i, 47.54.-r, 05.45.-a  相似文献   

14.
密集颗粒物质由大量颗粒组成的多体相互作用体系,在一定条件下,颗粒互相连接,形成相对稳定的介观尺度结构,其几何和动力学性质较大程度上决定了颗粒体系的宏观物理和力学性质,因此开展颗粒的介观结构研究具有重要的理论价值,是科学的前沿之一.自然界的堆石坝、堰塞体和碎屑流,以及工程中的高温气冷堆堆芯颗粒流和先进核裂变能系统(ADS嬗变)的颗粒散裂靶等都是典型的颗粒体系,研究颗粒体系宏观力学性质是灾害预测和调控技术的关键.本文首先介绍颗粒接触力理论和简化模型的研究进展,接着介绍介观尺度结构分析方法与测量技术,颗粒体系Jamming转变、软点和颗粒微位移测量技术等,最后列举了几个关键的科学问题.颗粒介质中很多基本力学问题的解决需要借鉴物理和数学等学科的最新成果,建立新的概念和范式,从新的角度、思路、理念去认识颗粒介质的基本问题.同时,颗粒介质的基础研究还要紧密结合工程应用领域的大量相关的核心技术,与工程领域专家共同合作,使得颗粒介质的研究有的放矢,更具生命力.  相似文献   

15.
16.
The onset of instability in the flow by an impulsively started rotating cylinder is analyzed under linear theory. It is well-known that at the critical Taylor number Tc=1695 the secondary flow in form of Taylor vortices sets in under the narrow-gap approximation. Here the dimensionless critical time c to mark the onset of instability for TTc is presented as a function of the Taylor number T. Available experimental data of water indicate that deviation of the velocity profiles from the primary flow occurs starting from a certain time 4c. It seems evident that during c4c the secondary flow is very weak and the primary state of time-dependent annular Couette flow is maintained.  相似文献   

17.
An one-dimensional continuum model and the corresponding governing equations are proposed for the blood flow in lung microcirculation, the analytical solutions in closed form are presented. It is shown that the obtained results coincide with Fung's in sheet flow. Project is supported by the National Natural, Science Fundation of China.  相似文献   

18.
In order to discuss the agreement of the ellipsoidal statistical BGK (ES-BGK) model with the Boltzmann equation, Burnett equations are computed by means of the second-order Chapman-Enskog expansion of the ES-BGK model. It is found that the Burnett equations for the ES-BGK model with the correct Prandtl number are identical to the Burnett equations for the Boltzmann equation for Maxwell molecules (fifth-order power potentials). However, for other types of particle interaction, the Boltzmann Burnett equations cannot be reproduced from the ES-BGK model.Furthermore, the linear stability of the ES-BGK Burnett equations is discussed. It is shown that the ES-BGK Burnett equations are linearly stable for Prandtl numbers of and for , while they are linearly unstable for and .Received: 29 April 2003, Accepted: 20 June 2003PACS: 510.10.-y, 47.45.-n Correspondence to: Y. Zheng  相似文献   

19.
Stress evolution in a dense granular material is closely related to interactions of contacting particles. We investigate statistics related to particle interactions and the relationship between the averaged local relative motion and the macroscopic motion. The validity of the Voigt and Reuss assumptions is examined, and extensions to these assumptions are proposed. Effects of history in the dense granular material are investigated. Statistical samples used in this paper are obtained using three-dimensional numerical simulations of dense granular media under uniaxial cyclical compression. The results show that stresses arise mostly from normal forces between particles, and direct contributions from frictional tangential forces between particles are small. Tangential friction, however, significantly increases the particle contact time, and thus reduces the rate of contact breakage. The contact breakage rate is demonstrated to be a stress relaxation rate. Therefore, stress increases significantly with friction between particles as a result of prolonged relaxation time.  相似文献   

20.
In this paper, a new two-fluid two-component computational fluid dynamics (CFD) model is developed to simulate vertical upward two-phase annular flow. The two-phase VOF scheme is utilized to model the roll wave flow, and the gas core is described by a two-component phase consisting of liquid droplets and gas phase. The entrainment and deposition processes are taken into account by source terms of the governing equations. Unlike the previous models, the newly developed model includes the effect of liquid roll waves directly determined from the CFD code, which is able to provide more detailed and, the most important, more self-standing information for both the gas core flow and the film flow as well as their interactions. Predicted results are compared with experimental data, and a good agreement is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号