首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice \({\mathbf{Z}}^n\). We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.  相似文献   

2.
In this paper, we present a two-phase augmented Lagrangian method, called QSDPNAL, for solving convex quadratic semidefinite programming (QSDP) problems with constraints consisting of a large number of linear equality and inequality constraints, a simple convex polyhedral set constraint, and a positive semidefinite cone constraint. A first order algorithm which relies on the inexact Schur complement based decomposition technique is developed in QSDPNAL-Phase I with the aim of solving a QSDP problem to moderate accuracy or using it to generate a reasonably good initial point for the second phase. In QSDPNAL-Phase II, we design an augmented Lagrangian method (ALM) wherein the inner subproblem in each iteration is solved via inexact semismooth Newton based algorithms. Simple and implementable stopping criteria are designed for the ALM. Moreover, under mild conditions, we are able to establish the rate of convergence of the proposed algorithm and prove the R-(super)linear convergence of the KKT residual. In the implementation of QSDPNAL, we also develop efficient techniques for solving large scale linear systems of equations under certain subspace constraints. More specifically, simpler and yet better conditioned linear systems are carefully designed to replace the original linear systems and novel shadow sequences are constructed to alleviate the numerical difficulties brought about by the crucial subspace constraints. Extensive numerical results for various large scale QSDPs show that our two-phase algorithm is highly efficient and robust in obtaining accurate solutions. The software reviewed as part of this submission was given the DOI (Digital Object Identifier)  https://doi.org/10.5281/zenodo.1206980.  相似文献   

3.
4.
葛泽慧  刘三阳 《应用数学》2002,15(1):108-112
本文基于ε-次微分向量丛理论和强对偶定理,通过寻求半定规划对偶问题的最优下降方向,得到原半定规划的最优值。数值实验表明ε-次微分向量丛方法较适合于解大规模半定规划。  相似文献   

5.
In this paper, an inexact non-interior continuation method is proposed for semidefinite Programs. By a matrix mapping, the primal-dual optimal condition can be inverted into a smoothed nonlinear system of equations. A linear system of equations with residual vector is eventually driven by solving the smoothed nonlinear system of equations and finally solved by the conjugate residual method. The global and locally superlinear convergence are verified. Numerical results and comparisons indicate that the proposed methods are very promising and comparable to several interior-point and other exact non-interior continuation methods.  相似文献   

6.
《Optimization》2012,61(6):715-738
In this article, a nonlinear semidefinite program is reformulated into a mathematical program with a matrix equality constraint and a sequential quadratic penalty method is proposed to solve the latter problem. We discuss the differentiability and convexity of the penalty function. Necessary and sufficient conditions for the convergence of optimal values of penalty problems to that of the original semidefinite program are obtained. The convergence of optimal solutions of penalty problems to that of the original semidefinite program is also investigated. We show that any limit point of a sequence of stationary points of penalty problems satisfies the KKT optimality condition of the semidefinite program. Smoothed penalty problems that have the same order of smothness as the original semidefinite program are adopted. Corresponding results such as the convexity of the smoothed penalty function, the convergence of optimal values, optimal solutions and the stationary points of the smoothed penalty problems are obtained.  相似文献   

7.
A proximal bundle method with inexact data is presented for minimizing an unconstrained nonsmooth convex function ff. At each iteration, only the approximate evaluations of ff and its εε-subgradients are required and its search directions are determined via solving quadratic programmings. Compared with the pre-existing results, the polyhedral approximation model that we offer is more precise and a new term is added into the estimation term of the descent from the model. It is shown that every cluster of the sequence of iterates generated by the proposed algorithm is an exact solution of the unconstrained minimization problem.  相似文献   

8.
Range-space methods for convex quadratic programming improve in efficiency as the number of constraints active at the solution decreases. In this paper we describe a range-space method based upon updating a weighted Gram-Schmidt factorization of the constraints in the active set. The updating methods described are applicable to both primal and dual quadratic programming algorithms that use an active-set strategy. Many quadratic programming problems include simple bounds on all the variables as well as general linear constraints. A feature of the proposed method is that it is able to exploit the structure of simple bound constraints. This allows the method to retain efficiency when the number ofgeneral constraints active at the solution is small. Furthermore, the efficiency of the method improves as the number of active bound constraints increases. This research was supported by the U.S. Department of Energy Contract DE-AC03-76SF00326, PA No. DE-AT03-76ER72018; National Science Foundation Grants MCS-7926009 and ECS-8012974; the Office of Naval Research Contract N00014-75-C-0267; and the U.S. Army Research Office Contract DAAG29-79-C-0110. The work of Nicholas Gould was supported by the Science and Engineering Research Council of Great Britain.  相似文献   

9.
《Optimization》2012,61(3):235-243
In this paper, we derive an unconstrained convex programming approach to solving convex quadratic programming problems in standard form. Related duality theory is established by using two simple inequalities. An ?-optimal solution is obtained by solving an unconstrained dual convex program. A dual-to-primal conversion formula is also provided. Some preliminary computational results of using a curved search method is included  相似文献   

10.
We propose a modified alternating direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto the positive semidefinite cone is required at each iteration. We prove global convergence and provide numerical evidence to show the effectiveness of this method.  相似文献   

11.
In this paper an exterior point polynomial time algorithm for convex quadratic programming problems is proposed. We convert a convex quadratic program into an unconstrained convex program problem with a self-concordant objective function. We show that, only with duality, the Path-following method is valid. The computational complexity analysis of the algorithm is given.  相似文献   

12.
We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound by exploiting the integrality of the variables using suitably-defined lattice-free ellipsoids. Experiments show that our approach is very fast on both unconstrained problems and problems with box constraints. The main reason is that all expensive calculations can be done in a preprocessing phase, while a single node in the enumeration tree can be processed in linear time in the problem dimension.  相似文献   

13.
We present an extension of Karmarkar's linear programming algorithm for solving a more general group of optimization problems: convex quadratic programs. This extension is based on the iterated application of the objective augmentation and the projective transformation, followed by optimization over an inscribing ellipsoid centered at the current solution. It creates a sequence of interior feasible points that converge to the optimal feasible solution in O(Ln) iterations; each iteration can be computed in O(Ln 3) arithmetic operations, wheren is the number of variables andL is the number of bits in the input. In this paper, we emphasize its convergence property, practical efficiency, and relation to the ellipsoid method.  相似文献   

14.
In this paper we present a primal-dual inexact infeasible interior-point algorithm for semidefinite programming problems (SDP). This algorithm allows the use of search directions that are calculated from the defining linear system with only moderate accuracy, and does not require feasibility to be maintained even if the initial iterate happened to be a feasible solution of the problem. Under a mild assumption on the inexactness, we show that the algorithm can find an -approximate solution of an SDP in O(n2ln(1/)) iterations. This bound of our algorithm is the same as that of the exact infeasible interior point algorithms proposed by Y. Zhang.Research supported in part by the Singapore-MIT alliance, and NUS Academic Research Grant R-146-000-032-112.Mathematics Subject Classification (1991): 90C05, 90C30, 65K05  相似文献   

15.
In this paper, two-stage stochastic quadratic programming problems with equality constraints are considered. By Monte Carlo simulation-based approximations of the objective function and its first (second)derivative,an inexact Lagrange-Newton type method is proposed.It is showed that this method is globally convergent with probability one. In particular, the convergence is local superlinear under an integral approximation error bound condition.Moreover, this method can be easily extended to solve stochastic quadratic programming problems with inequality constraints.  相似文献   

16.
We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C. (difference between convex) optimization approach, which can be reformulated as semidefinite programming problems. As an application, we propose new valid linear constraints for rank-one relaxation.  相似文献   

17.
可分离凸优化问题的非精确平行分裂算法   总被引:1,自引:0,他引:1  
针对一类可分离凸优化问题提出了一种非精确平行分裂算法.该算法充分利用了所求解问题的可分离结构,并对子问题进行非精确求解.在适当的条件下,证明了所提出的非精确平行分裂算法的全局收敛性,初步的数值实验说明了算法有效性.  相似文献   

18.
An interior Newton method for quadratic programming   总被引:2,自引:0,他引:2  
We propose a new (interior) approach for the general quadratic programming problem. We establish that the new method has strong convergence properties: the generated sequence converges globally to a point satisfying the second-order necessary optimality conditions, and the rate of convergence is 2-step quadratic if the limit point is a strong local minimizer. Published alternative interior approaches do not share such strong convergence properties for the nonconvex case. We also report on the results of preliminary numerical experiments: the results indicate that the proposed method has considerable practical potential. Received October 11, 1993 / Revised version received February 20, 1996 Published online July 19, 1999  相似文献   

19.
We propose an adaptive, constraint-reduced, primal-dual interior-point algorithm for convex quadratic programming with many more inequality constraints than variables. We reduce the computational effort by assembling, instead of the exact normal-equation matrix, an approximate matrix from a well chosen index set which includes indices of constraints that seem to be most critical. Starting with a large portion of the constraints, our proposed scheme excludes more unnecessary constraints at later iterations. We provide proofs for the global convergence and the quadratic local convergence rate of an affine-scaling variant. Numerical experiments on random problems, on a data-fitting problem, and on a problem in array pattern synthesis show the effectiveness of the constraint reduction in decreasing the time per iteration without significantly affecting the number of iterations. We note that a similar constraint-reduction approach can be applied to algorithms of Mehrotra’s predictor-corrector type, although no convergence theory is supplied.  相似文献   

20.
Yang  Heng  Liang  Ling  Carlone  Luca  Toh  Kim-Chuan 《Mathematical Programming》2023,201(1-2):409-472
Mathematical Programming - We consider solving high-order and tight semidefinite programming (SDP) relaxations of nonconvex polynomial optimization problems (POPs) that often admit degenerate...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号