首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Summary This paper describes the further development of the functionality of our in-house de novo design program, PRO_LIGAND. In particular, attention is focussed on the implementation and validation of the directed tweak method for the construction of conformationally flexible molecules, such as peptides, from molecular fragments. This flexible fitting method is compared to the original method based on libraries of prestored conformations for each fragment. It is shown that the directed tweak method produces results of comparable quality, with significant time savings. By removing the need to generate a set of representative conformers for any new library fragment, the flexible fitting method increases the speed and simplicity with which new fragments can be included in a fragment library and also reduces the disk space required for library storage. A further improvement to the molecular construction process within PRO_LIGAND is the inclusion of a constrained minimisation procedure which relaxes fragments onto the design model and can be used to reject highly strained structures during the structure generation phase. This relaxation is shown to be very useful in simple test cases, but restricts diversity for more realistic examples. The advantages and disadvantages of these additions to the PRO_LIGAND methodology are illustrated by three examples: similar design to an alpha helix region of dihydrofolate reductase, complementary design to the active site of HIV-1 protease and similar design to an epitope region of lysozyme.  相似文献   

2.
Difficulties associated with computer-aided molecular design (CAMD) of carborane containing molecules have hampered drug development in boron neutron capture therapy (BNCT). A new approach of modeling and docking of carborane containing molecules with the readily available software packages , and is described. This new method is intended as a guide for boron chemists interested in using CAMD of carborane containing agents for medical applications such as BNCT.  相似文献   

3.
AstexViewer is a Java molecular graphics program that can be used for visualisation in many aspects of structure-based drug design. This paper describes its functionality, implementation and examples of its use. The program can run as an Applet in a web browser allowing structures to be displayed without installing additional software. Applications of its use are described for visualisation and as part of a structure based design platform. The software is being made freely available to the community and may be downloaded from http://www.astex-technology.com/AstexViewer.  相似文献   

4.
Summary Recently, the development of computer programs which permit the de novo design of molecular structures satisfying a set of steric and chemical constraints has become a burgeoning area of research and many operational systems have been reported in the literature. Experience with PRO_LIGAND—the de novo design methodology embodied in our in-house molecular design and simulation system PRO-METHEUS—has suggested that the addition of a genetic algorithm (GA) structure refinement procedure can add value to an already useful tool. Starting with the set of designed molecules as an initial population, the GA can combine features from both high- and low-scoring structures and, over a number of generations, produce individuals of better score than any of the starting structures. This paper describes how we have implemented such a procedure and demonstrates its efficacy in improving two sets of molecules generated by different de novo design projects.  相似文献   

5.
6.
Use of solvent mapping, based on multiple-copy minimization (MCM) techniques, is common in structure-based drug discovery. The minima of small-molecule probes define locations for complementary interactions within a binding pocket. Here, we present improved methods for MCM. In particular, a Jarvis-Patrick (JP) method is outlined for grouping the final locations of minimized probes into physical clusters. This algorithm has been tested through a study of protein-protein interfaces, showing the process to be robust, deterministic, and fast in the mapping of protein "hot spots." Improvements in the initial placement of probe molecules are also described. A final application to HIV-1 protease shows how our automated technique can be used to partition data too complicated to analyze by hand. These new automated methods may be easily and quickly extended to other protein systems, and our clustering methodology may be readily incorporated into other clustering packages.  相似文献   

7.
The Aurora family of serine/threonine kinases are mitotic regulators involved in centrosome duplication, formation of the bipolar mitotic spindle and the alignment of the chromosomes along the spindle. These proteins are frequently overexpressed in tumor cells as compared to normal cells and are therefore potential therapeutic oncology targets. An Aurora A high throughput screen revealed a promising sub-micromolar indazole-benzimidazole lead. Modification of the benzimidazole portion of the lead to a C2 linker with a phenyl ring was proposed to achieve novelty. Docking revealed that a conjugated linker was optimal and the resulting compounds were equipotent with the lead. Further structure-guided optimization of substituents on the 5 & 6 position of the indazole led to single digit nanomolar potency. The homology between the Aurora A & Aurora B kinase domains is 71% but their binding sites only differ at residues 212 & 217 (Aurora A numbering). However interactions with only the latter residue may be used for obtaining selectivity. An analysis of published Aurora A and Aurora B X-ray structures reveals subtle differences in the shape of the binding sites. This was exploited by introduction of appropriately sized substituents in the 4 & 6 position of the indazole leading to Aurora B selective inhibitors. Finally we calculate the conformational energy penalty of the putative bioactive conformation of our inhibitors and show that this property correlates well with the Aurora A binding affinity.  相似文献   

8.
Summary A structure-activity study has been carried out on several compounds known as inhibitors of the serine protease prolyl endopeptidase. Conformational analysis has been done using different molecular mechanics methods such as molecular dynamics, or a randomized conformational search method. The conformers obtained were classified using geometric and energetic criteria. A pattern recognition analysis was done in order to divide conformers according to families. The resulting dominant families, for all compounds investigated, showed very similar geometric features. Based on the lowest energy conformers obtained after randomized conformational analysis, a 3D-QSAR model was established using the CoMFA approach. The validity of this model was verified by prediciting correctly the activity of other molecules not used in the construction of this model.  相似文献   

9.
Summary Molecular dynamics simulations have been performed on a number of conformationally flexible pyrethroid insecticides. The results indicate that molecular dynamics is a suitable tool for conformational searching of small molecules given suitable simulation parameters. The structures derived from the simulations are compared with the static conformation used in a previous study. Various physicochemical parameters have been calculated for a set of conformations selected from the simulations using multivariate analysis. The averaged values of the parameters over the selected set (and the factors derived from them) are compared with the single conformation values used in the previous study.  相似文献   

10.
New methods for docking, template fitting and building pseudo-receptors are described. Full conformational searches are carried out for flexible cyclic and acyclic molecules. QXP (quick explore) search algorithms are derived from the method of Monte Carlo perturbation with energy minimization in Cartesian space. An additional fast search step is introduced between the initial perturbation and energy minimization. The fast search produces approximate low-energy structures, which are likely to minimize to a low energy. For template fitting, QXP uses a superposition force field which automatically assigns short-range attractive forces to similar atoms in different molecules. The docking algorithms were evaluated using X-ray data for 12 protein–ligand complexes. The ligands had up to 24 rotatable bonds and ranged from highly polar to mostly nonpolar. Docking searches of the randomly disordered ligands gave rms differences between the lowest energy docked structure and the energy-minimized X-ray structure, of less than 0.76 Å for 10 of the ligands. For all the ligands, the rms difference between the energy-minimized X-ray structure and the closest docked structure was less than 0.4 Å, when parts of one of the molecules which are in the solvent were excluded from the rms calculation. Template fitting was tested using four ACE inhibitors. Three ACE templates have been previously published. A single run using QXP generated a series of templates which contained examples of each of the three. A pseudo-receptor, complementary to an ACE template, was built out of small molecules, such as pyrrole, cyclopentanone and propane. When individually energy minimized in the pseudo-receptor, each of the four ACE inhibitors moved with an rms of less than 0.25 Å. After random perturbation, the inhibitors were docked into the pseudo-receptor. Each lowest energy docked structure matched the energy-minimized geometry with an rms of less than 0.08 Å. Thus, the pseudo-receptor shows steric and chemical complementarity to all four molecules. The QXP program is reliable, easy to use and sufficiently rapid for routine application in structure-based drug design.  相似文献   

11.
Summary In this paper a database of atomic residual charges has been constructed for all the molecular fragments defined previously in a combinatorial search of the Cambridge Structural Database. The charges generated for the atoms in each fragment are compared with charges calculated for whole molecules containing those fragments. The fragment atomic charges lie within 1 S.D. of the mean for 68%, and within 2 S.D. for 91%, of the atoms whose charges were computed for whole molecules. The actual charges on any atom are strongly influenced by the adjacent connected atoms. There is a large spread of atomic residual charge within the fragments database.  相似文献   

12.
13.
Summary ALADDIN is a computer program for the design or recognition of compounds that meet geometric, steric, and substructural criteria. ALADDIN searches a database of three-dimensional structures, marks atoms that meet substructural criteria, evaluates geometric criteria, and prepares a number of files that are input for molecular modification and coordinate generation as well as for molecular graphics. Properties calculated from the three-dimensional structure are described by either properties calculated from the molecule itself or from the molecule as compared to a reference molecule and associated surfaces. ALADDIN was used to design analogues to probe a bioactive conformation of a small molecule and a peptide, to test alternative superposition rules for receptor mapping of the D2 dopamine receptor, to recognize unexpected D2 dopamine agonist activity of existing compounds, and to design compounds to fit a binding site on a protein of known structure. We have found that series designed by ALADDIN show much more subtle variation in shape than do those designed by traditional methods and that compounds can be designed to be very close matches to the objective.  相似文献   

14.
Rational drug design involves finding solutions to large combinatorial problems for which an exhaustive search is impractical. Genetic algorithms provide a novel tool for the investigation of such problems. These are a class of algorithms that mimic some of the major characteristics of Darwinian evolution. LEA has been designed in order to conceive novel small organic molecules which satisfy quantitative structure-activity relationship based rules (fitness). The fitness consists of a sum of constraints that are range properties. The algorithm takes an initial set of fragments and iteratively improves them by means of crossover and mutation operators that are related to those involved in Darwinian evolution. The basis of the algorithm, its implementation and parameterization, are described together with an application in de novo molecular design of new retinoids. The results may be promising for chemical synthesis and show that this tool may find extensive applications in de novo drug design projects.  相似文献   

15.
Placement of medium-sized molecular fragments into active sites of proteins   总被引:2,自引:0,他引:2  
Summary We present an algorithm for placing molecular fragments into the active site of a receptor. A molecular fragment is defined as a connected part of a molecule containing only complete ring systems. The algorithm is part of a docking tool, called FlexX, which is currently under development at GMD. The overall goal is to provide means of automatically computing low-energy conformations of the ligand within the active site, with an accuracy approaching the limitations of experimental methods for resolving molecular structures and within a run time that allows for docking large sets of ligands. The methods by which we plan to achieve this goal are the explicit exploitation of molecular flexibility of the ligand and the incorporation of physicochemical properties of the molecules. The algorithm for fragment placement, which is the topic of this paper, is based on pattern recognition techniques and is able to predict a small set of possible positions of a molecular fragment with low flexibility within seconds on a workstation. In most cases, a placement with rms deviation below 1.0 Å with respect to the X-ray structure is found among the 10 highest ranking solutions, assuming that the receptor is given in the bound conformation.  相似文献   

16.
The molecular dynamics is one of the most widely used methods for the simulation of the properties corresponding to ionic motion. Unfortunately, classical molecular dynamics cannot be applied for electron transfer simulation. Suggested modification of the molecular dynamics allows performing the electron transfer from one particle to another during simulation runtime. All additional data structure and the corresponding algorithms are presented in this article. The method can be applied to the systems with pair Van der Waals and Coulomb interactions. Moreover, it may be extended for many‐bodied interatomic interactions. In addition, an algorithm of transference numbers calculation has been designed. This extension is not an independent method but it can be useful for simulating the systems with high concentration of electron donors and acceptors. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
Summary Specially expanded databases containing three-dimensional structures are created to enhance the utility of docking methods to find new leads, i.e., active compounds of pharmacological interest. The expansion is based on the automatic generation of a set of maximally dissimilar conformations. The ligand receptor system of methotrexate and dihydrofolate reductase is used to demonstrate the feasibility of creating flexibases and their utility in docking studies.  相似文献   

18.
This paper describes a novel methodology, PRO_SELECT, which combines elements of structure-based drug design and combinatorial chemistry to create a new paradigm for accelerated lead discovery. Starting with a synthetically accessible template positioned in the active site of the target of interest, PRO_SELECT employs database searching to generate lists of potential substituents for each substituent position on the template. These substituents are selected on the basis of their being able to couple to the template using known synthetic routes and their possession of the correct functionality to interact with specified residues in the active site. The lists of potential substituents are then screened computationally against the active site using rapid algorithms. An empirical scoring function, correlated to binding free energy, is used to rank the substituents at each position. The highest scoring substituents at each position can then be examined using a variety of techniques and a final selection is made. Combinatorial enumeration of the final lists generates a library of synthetically accessible molecules, which may then be prioritised for synthesis and assay. The results obtained using PRO_SELECT to design thrombin inhibitors are briefly discussed.  相似文献   

19.
20.
A box-counting-based algorithm (SEBC) has been developed for the numerical computation of the Shannon entropy from samples of continuous functions. Its performance was tested by applying it to several samples of known continuous distribution functions. The results obtained with SEBC reproduced those obtained by analytical or numerical integration. SEBC was also employed for computing the Shannon entropies of the steric energy, Sh(E(S)), of several amino acids from their in vacuo NVE molecular dynamics simulations using the AMBER-4 force field. The results obtained correlate linearly with the experimental standard thermodynamic entropies of these compounds. This work points to the possibility of introducing straightforward and reliable calculations of thermodynamic entropies from empirical linear relationships with Sh(E(S)) obtained from MD simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号