首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of carrier proteins by the covalent attachment of the 4'-phosphopantetheine (P-pant) moiety of coenzyme A to a conserved serine residue, a reaction absolutely required for the biosynthesis of natural products including fatty acids, polyketides, and nonribosomal peptides. PPTases have been classified according to their carrier protein specificity. In organisms containing multiple P-pant-requiring pathways, each pathway has been suggested to have its own PPTase activity. However, sequence analysis of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC15003 failed to reveal an associated PPTase gene. RESULTS: A general approach for cloning PPTase genes by PCR was developed and applied to the cloning of the svp gene from S. verticillus. The svp gene is mapped to an independent locus not clustered with any of the known NRPS or PKS clusters. The Svp protein was overproduced in Escherichia coli, purified to homogeneity, and shown to be a monomer in solution. Svp is a PPTase capable of modifying both type I and type II acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs) from either S. verticillus or other Streptomyces species. As compared to Sfp, the only 'promiscuous' PPTase known previously, Svp displays a similar catalytic efficiency (k(cat)/K(m)) for the BlmI PCP but a 346-fold increase in catalytic efficiency for the TcmM ACP. CONCLUSIONS: PPTases have recently been re-classified on a structural basis into two subfamilies: ACPS-type and Sfp-type. The development of a PCR method for cloning Sfp-type PPTases from actinomycetes, the recognition of the Sfp-type PPTases to be associated with secondary metabolism with a relaxed carrier protein specificity, and the availability of Svp, in addition to Sfp, should facilitate future endeavors in engineered biosynthesis of peptide, polyketide, and, in particular, hybrid peptide-polyketide natural products.  相似文献   

2.
L Du  B Shen 《Chemistry & biology》1999,6(8):507-517
BACKGROUND: Nonribosomal peptide synthetases (NRPSs) catalyze the assembly of a structurally diverse group of peptides by the multiple-carrier thiotemplate mechanism. All NRPSs known to date are exclusively type I modular enzymes that consist of domains, such as adenylation (A), peptidyl carrier protein (PCP) and condensation (C) domains, for individual enzyme activities. Although several A and PCP domains have been demonstrated to function independently, aminoacylation in trans has been successful only between PCPs and their cognate A domains. RESULTS: We have identified within the bleomycin-biosynthesis gene cluster from Streptomyces verticillus ATCC15003 the blmI gene that encodes a discrete PCP protein. We overexpressed the blmI gene in Escherichia coli, purified the BlmI protein, and demonstrated that apo-BlmI can be efficiently modified into holo-BlmI either in vivo or in vitro by PCP-specific 4'-phosphopantetheine transferases (PPTases). Unlike the PCP domains in type I NRPSs, BlmI lacks its cognate A domain and can be aminoacylated by Val-A, an A domain from a completely unrelated type I NRPS. CONCLUSIONS: BlmI represents the first characterized type II PCP. The BlmI type II PCP, like the PCP domains of type I NRPSs, can be 4'-phospho-pantetheinylated by PCP-specific PPTases but is biochemically distinct in that it can be aminoacylated by an A domain from a completely unrelated type I NRPS. Our results provide for the first time the genetic and biochemical evidence to support the existence of a type II NRPS, which might be useful in the combinatorial manipulation of NRPS proteins to generate novel peptides.  相似文献   

3.
BACKGROUND: The structural and catalytic similarities between modular nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) inspired us to search for a hybrid NRPS-PKS system. The antitumor drug bleomycin (BLM) is a natural hybrid peptide-polyketide metabolite, the biosynthesis of which provides an excellent opportunity to investigate intermodular communication between NRPS and PKS modules. Here, we report the cloning, sequencing, and characterization of the BLM biosynthetic gene cluster from Streptomyces verticillus ATCC15003. RESULTS: A set of 30 genes clustered with the previously characterized blmAB resistance genes were defined by sequencing a 85-kb contiguous region of DNA from S. verticillus ATCC15003. The sequenced gene cluster consists of 10 NRPS genes encoding nine NRPS modules, a PKS gene encoding one PKS module, five sugar biosynthesis genes, as well as genes encoding other biosynthesis, resistance, and regulatory proteins. The substrate specificities of individual NRPS and PKS modules were predicted based on sequence analysis, and the amino acid specificities of two NRPS modules were confirmed biochemically in vitro. The involvement of the cloned genes in BLM biosynthesis was demonstrated by bioconversion of the BLM aglycones into BLMs in Streptomyces lividans expressing a part of the gene cluster. CONCLUSION: The blm gene cluster is characterized by a hybrid NRPS-PKS system, supporting the wisdom of combining individual NRPS and PKS modules for combinatorial biosynthesis. The availability of the blm gene cluster has set the stage for engineering novel BLM analogs by genetic manipulation of genes governing BLM biosynthesis and for investigating the molecular basis for intermodular communication between NRPS and PKS in the biosynthesis of hybrid peptide-polyketide metabolites.  相似文献   

4.
BACKGROUND: Combinatorial biosynthesis techniques using polyketide synthases (PKSs) in heterologous host organisms have enabled the production of macrolide aglycone libraries in which many positions of the macrolactone ring have been manipulated. However, the deoxysugar moieties of macrolides, absent in previous libraries, play a critical role in contributing to the antimicrobial properties exhibited by compounds such as erythromycin. Since the glycosidic components of polyketides dramatically alter their molecular binding properties, it would be useful to develop general expression hosts and vectors for synthesis and attachment of deoxysugars to expand the nature and size of such polyketide libraries. RESULTS: A set of nine deoxysugar biosynthetic and auxiliary genes from the picromycin/methymycin (pik) cluster was integrated in the chromosome of Streptomyces lividans to create a host which synthesizes TDP-D-desosamine. The pik desosaminyl transferase was also included so that when the strain was transformed with a previously constructed library of expression plasmids encoding genetically modified PKSs that produce different macrolactones, the resulting strains produced desosaminylated derivatives. Although conversion of the macrolactones was generally low, bioassays revealed that, unlike their aglycone precursors, these novel macrolides possessed antibiotic activity. CONCLUSIONS: Based on the structural differences among the compounds that were glycosylated it appears that the desosaminyl transferase from the pik gene cluster is quite tolerant of changes in the macrolactone substrate. Since others have demonstrated tolerance towards modifications in the sugar substituent, one can imagine employing this approach to alter both polyketide and deoxysugar pathways to produce 'unnatural' natural product libraries.  相似文献   

5.
Li A  Piel J 《Chemistry & biology》2002,9(9):1017-1026
The telomerase inhibitor griseorhodin A is probably the most heavily oxidized bacterial polyketide known and features a unique epoxyspiroketal moiety crucial for its activity. To gain insight into which tailoring enzymes generate this pharmacophore, we have cloned and fully sequenced the griseorhodin biosynthesis gene cluster. Among other unusual features, this aromatic polyketide synthase (PKS) system encodes an unprecedented number of functionally diverse oxidoreductases, which are involved in the oxidative modification of a polyaromatic tridecaketide precursor by cleavage of three carbon-carbon bonds. The cluster was highly unstable on a variety of shuttle plasmids but could finally be functionally expressed in its entirety in Streptomyces lividans using a novel integrative cosmid vector. The availability of the tailoring system now opens up the possibility of engineering nonnatural biosynthetic pathways yielding novel pharmacologically active analogs with a similar pharmacophore.  相似文献   

6.
Iso-Migrastatin (10) has been shown to be the main natural product of Streptomyces platensis, which undergoes a facile, H2O-mediated rearrangement into dorrigocin A (2), 13-epi-dorrigocin A (11), dorrigocin B (3), and migrastatin (1). Eight new congeners (12-19) of 10 were characterized. They can undergo the same H2O-mediated rearrangement into the corresponding 1, 2, 3, and 11 analogues (20-43) or 1,4-Michael addition with cysteine to afford the corresponding analogues (44-51) of NK30424 A and B (5, 6). This study generated a 47-member library of glutarimide polyketides, setting the stage to investigate the SAR for this family of natural products. These results also established the absolute stereochemistry of 5 and 6 and shed new light into the post-polyketide synthase steps for 10 biosynthesis.  相似文献   

7.
8.
To gain initial structure-activity relationships regarding the highly functionalized pentyl side chain attached at C-3 of mithramycin (MTM), we focused on a post-polyketide synthase (post-PKS) tailoring step of the MTM biosynthesis by Streptomyces argillaceus ATCC 12956, which was proposed to be catalyzed by ketoreductase (KR) MtmW. In this last step of the MTM biosynthesis, a keto group of the pentyl side chain is reduced to a secondary alcohol, and we anticipated the generation of an MTM derivative with an additional keto group in the 3-side chain. Insertional inactivation of mtmW, a gene located ca. 8 kb downstream of the mithramycin-PKS genes, yielded an S. argillaceus mutant, which accumulated three new mithramycin analogues, namely mithramycin SA, demycarosyl-mithramycin SK, and mithramycin SK (MTM-SK). The structures of these three compounds confirmed indirectly the proposed role of MtmW in MTM biosynthesis. However, the new mithramycin derivatives bear unexpectedly shorter 3-side chains (ethyl or butyl) than MTM, presumably caused by nonenzymatic rearrangement or cleavage reactions of the initially formed pentyl side chain with a reactive beta-dicarbonyl functional group. The major product, MTM-SK, was tested in vitro against a variety of human cancer cell lines, as well as in an in vitro toxicity assay, and showed an improved therapeutic index, in comparison to the parent drug, MTM.  相似文献   

9.
Lu CK  Chou HN  Lee CK  Lee TH 《Organic letters》2005,7(18):3893-3896
Prorocentin (1), isolated from an okadaic acid-producing organism, Prorocentrum lima, possessed all-trans trienes, an epoxide, as well as the 6/6/6-trans-fused/spiro-linked polyether ring moieties. The unique structure supports the proposed cyclization mechanism, polyene formation, epoxidation, and cyclization, of marine polyether toxins. The relative stereostructure was determined on the basis of spectral data. [structure: see text]  相似文献   

10.
Aspergiolide A, a novel antitumor compound, was produced by a marine-derived filamentous fungus Aspergillus glaucus. The biosynthesis of it was unambiguously determined by feeding experiments using [l-13C]sodium acetate, [2-13C]sodium acetate, and [1,2-13C2]sodium acetate precursors followed by 13C NMR spectroscopic investigation of the isolated products. Analysis of the patterns of 13C-enrichment revealed that all 25 carbon atoms in skeleton of aspergiolide A were derived from labeled acetate. And among them, 12 carbon atoms were labeled from the carboxylic group of acetate, while the other 13 carbon atoms were labeled from the methylic group of acetate. Besides, the labeling pattern of [1,2-13C2]sodium acetate feeding experiment demonstrated that 12 intact acetate units were incorporated in aspergiolide A by polyketide pathway.  相似文献   

11.
A highly convergent and efficient total synthesis of the potent antitumor polyketide (-)-callystatin A is described. The synthesis required 19 steps from N-propionyl oxazolidinone 23 and produced the desired product in 3.5% overall yield.  相似文献   

12.
13.
Abstract

Pholiotone A (1), a new polyketide derivative, with tetrahydrobenzofuran-4(2H)-one skeleton, together with four known compounds, trichodermatides A (2) and B (3) and koninginins B (4) and E (5), were isolated from the crude extract of Pholiota sp. The structures of all the isolated compounds were determined mainly by NMR experiments, the modified Mosher method and electronic circular dichroism (ECD) calculations. The antifungal and cytotoxicity of all isolates were evaluated.  相似文献   

14.
Mycothiazole isolated from marine sponges has been efficiently synthesized in a convergent manner. The key reactions involve the thiazole synthesis by dehydrogenation of the thiazolidine with chemical manganese dioxide (CMD), the Stille coupling, and the Nagao asymmetric acetate aldol reaction using the chiral 1,3-thiazolidine-2-thione. This synthesis clearly established the absolute configuration of natural mycothiazole to be (R).  相似文献   

15.
BACKGROUND: The polyene macrolide amphotericin B is produced by Streptomyces nodosus ATCC14899. Amphotericin B is a potent antifungal antibiotic and has activity against some viruses, protozoans and prions. Treatment of systemic fungal infections with amphotericin B is complicated by its low water-solubility and side effects which include severe nephrotoxicity. Analogues with improved properties could be generated by manipulating amphotericin biosynthetic genes in S. nodosus. RESULTS: A large polyketide synthase gene cluster was cloned from total cellular DNA of S. nodosus. Nucleotide sequence analysis of 113193 bp of this region revealed six large polyketide synthase genes as well as genes for two cytochrome P450 enzymes, two ABC transporter proteins, and genes involved in biosynthesis and attachment of mycosamine. Phage KC515-mediated gene disruption was used to show that this region is involved in amphotericin production. CONCLUSIONS: The availability of these genes and the development of a method for gene disruption and replacement in S. nodosus should allow production of novel amphotericins. A panel of analogues could lead to identification of derivatives with increased solubility, improved biological activity and reduced toxicity.  相似文献   

16.
Chartreusin is a potent antitumor agent with a mixed polyketide-carbohydrate structure produced by Streptomyces chartreusis. Three type II polyketide synthase (PKS) gene clusters were identified from an S. chartreusis HKI-249 genomic cosmid library, one of which encodes chartreusin (cha) biosynthesis, as confirmed by heterologous expression of the entire cha gene cluster in Streptomyces albus. Molecular analysis of the approximately 37 kb locus and structure elucidation of a linear pathway intermediate from an engineered mutant reveal that the unusual bis-lactone aglycone chartarin is derived from an anthracycline-type polyketide. A revised biosynthetic model involving an oxidative rearrangement is presented.  相似文献   

17.
A new polyketide with a cis-fused decalin ring scaffold, caldorin, was isolated from the marine cyanobacterium Caldora penicillata. The gross structure and relative configuration were elucidated by spectroscopic analyses. We also clarified that caldorin is a weak SOAT inhibitor and moderate osteoblast differentiation inhibitor. On the other hand, caldorin did not exhibit cytotoxicity against either HeLa or HL60 cells.  相似文献   

18.
A new cyclic octapeptide, bandunamide, was isolated from the acetone extracts of streptomyces griseovariabilis bandungensis. This cyclic octapeptide exhibits strong antimicrobial activity against Phytophthora drechsleri (IC50=15 ng/mL), Colletotrchum higginsiannum(IC50=15.6 ng/mL), Piricularia oxyzae (IC50=0.2 μg/mL), and Fusarium oxysporum f. Sp.(IC50= 100μg/mL). The structure elucidation of bandunamide is herein reported.  相似文献   

19.
Nucleotide-glycosyltransferases (NDP-Gtfs) play key roles in a wide range of biological processes. It is difficult to probe the roles of individual glycosyltransferases or their products because, with few exceptions, selective glycosyltransferase inhibitors do not exist. Here, we investigate a high-throughput approach to identify glycosyltransferase inhibitors based on a fluorescent donor displacement assay. We have applied the screen to E. coli MurG, an enzyme that is both a potential antibiotic target and a paradigm for a large family of glycosyltransferases. We show that the compounds identified in the donor-displacement screen of MurG are selective for MurG over other enzymes that use similar or identical substrates, including structurally related enzymes. The donor displacement assay described here should be adaptable to many other NDP-Gtfs and represents a new strategy to identify selective NDP-Gtf inhibitors.  相似文献   

20.
Sugar biosynthesis cassette genes have been used to construct plasmids directing the biosynthesis of branched-chain deoxysugars: pFL942 (NDP-L-mycarose), pFL947 (NDP-4-deacetyl-L-chromose B), and pFL946/pFL954 (NDP-2,3,4-tridemethyl-L-nogalose). Expression of pFL942 and pFL947 in S. lividans 16F4, which harbors genes for elloramycinone biosynthesis and the flexible ElmGT glycosyltransferase of the elloramycin biosynthetic pathway, led to the formation of two compounds: 8-alpha-L-mycarosyl-elloramycinone and 8-demethyl-8-(4-deacetyl)-alpha-L-chromosyl-tetracenomycin C, respectively. Expression of pFL946 or pFL954 failed to produce detectable amounts of a novel glycosylated tetracenomycin derivative. Formation of these two compounds represents examples of the sugar cosubstrate flexibility of the ElmGT glycosyltransferase. The use of these cassette plasmids also provided insights into the substrate flexibility of deoxysugar biosynthesis enzymes as the C-methyltransferases EryBIII and MtmC, the epimerases OleL and EryBVII, and the 4-ketoreductases EryBIV and OleU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号