首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
光敏自组装多层膜用于向列型液晶光控取向的研究   总被引:5,自引:3,他引:2  
合成了含有光敏基团、双端为季铵阳离子的有机铵盐.将这种季铵盐与聚乙烯基苯磺酸钠用LBL(Layer-by-layer)方法组装成多层分子沉积膜,紫外光谱证明,这个过程为逐层、均匀沉积过程.在偏振紫外光照射下,多层膜中和光矢量方向匹配的光敏基团发生[2+2]环加成反应,形成表面张力各向异性膜.用该薄膜作向列相液晶的取向膜制成反平行液晶器件,在偏光显微镜下观察,发现取得均一、稳定的取向效果.  相似文献   

2.
由聚电解质自组装多层膜制备微孔薄膜   总被引:1,自引:0,他引:1  
带有相反电荷的聚电解质通过静电作用交替沉积可以得到自组装多层膜,由于这种技术可操作性强,用途广泛,近十几年来已有了大量的研究.聚电解质多层膜在一定条件下可以形成纳米孔和微米孔.Fu等研究了聚丙烯酸和聚乙烯基吡啶组成的氢键自组装多层膜在碱溶液中溶去其中的聚丙烯酸后,剩下的聚乙烯基吡啶重构形成微孔薄膜.Mendelsohn等发现将聚丙烯酸和聚烯丙基胺自组装而成的多层膜浸入pH=2.4左右的溶液中可制备微孔薄膜.但这些方法并不能使强聚电解质多层膜形成多孔结构。  相似文献   

3.
带相反电荷的聚电解质,交替沉积在基片,形成超薄有序膜,通常称为静电自组装,自1991年由Decher首次阐明以来,静电自组装技术引起了广泛重视,利用氢键相互作用的氢键自组装1997年才有报道,沈家骢、张希等从聚丙烯酸和聚乙烯基吡啶通过氢键组装了有序超薄膜。和乙烯基吡啶通过氢键组装超薄膜的制备。由于静电力和氢键均很弱,此类膜对极性溶剂不稳定,如在DMF中会离解而遭破坏,我们曾报道重氮树脂(DR)与酚醛树脂间通过氢键的自组装,本文报道聚(对乙烯基苯酚)(PVPh)的制备及春与重氮树脂(DR)间的氢键相经作用,并结合光照,制备了对极性溶剂稳定的超薄膜。  相似文献   

4.
利用自组装的方法实现碳纳米管的有序排列对制备碳纳米管基复合材料至关重要.将聚4-乙烯基吡啶修饰的碳纳米管与含有羧基的接枝共聚物聚丙烯酸-g-聚甲基丙烯酸甲酯(PAA-g-PMMA)相混合,由于吡啶基团与羧基之间的氢键作用,在聚合物微相分离的过程中,将诱导形成碳纳米管的有序排列,得到一种基于碳纳米管自组装的蜂窝状膜.  相似文献   

5.
付昱  向子龙  周军  吴欣蔚  李妍  焦永华 《化学学报》2012,70(17):1847-1852
以超支化聚乙烯亚胺为构筑基元、以卤键为推动力制备了可以选择性吸附带有负电荷小分子的层层组装多层膜. 为了将超支化聚乙烯亚胺引入多层膜体系中, 我们首先制备了接枝有卤键给体分子-碘全氟苯的超支化聚乙烯亚胺(BPEI-I). 然后将BPEI-I和含有卤键受体的聚(4-乙烯吡啶)(PVPy)在四氢呋喃和三氯甲烷的混合溶剂中组装成膜, 并用紫外可见光谱、AFM和XPS对膜的组装过程、形貌、厚度和推动力进行了表征. 制备得到的BPEI-I和PVPy多层膜可以吸附含有负电荷的2-蒽甲酸钠小分子, 而对有类似结构但带有正电荷的溴化-N-(2-蒽甲基)吡啶盐却没有吸附作用. 这种选择性吸附能力主要得益于包覆在多层膜中的超支化聚乙烯亚胺基元的正电荷空腔和由卤键构筑的弱极性微环境. 本文的研究为制备选择性吸附薄膜提供了一种新的思路, 在传感、富集分离和微接触印刷等领域都有潜在应用价值.  相似文献   

6.
1991年Decher等将带相反电荷的聚电解质 ,于水溶液中交替沉积在片基上 ,制备了多层超薄膜[1] ,这种制膜方法现称为静电自组装 .它操作简单 ,无需专用设备 ;一般在水体系进行 ,对环境友好 ;静电力比范德华力强 ,使它比LB膜稳定 ,所以近年来有很大发展[2 ] .现在自组装成膜驱动力已从静电力扩展到氢键力、电荷转移相互作用、疏水相互作用等 ,用于组装的组分也从聚电解质扩展到多官能团小分子、胶体粒子、无机纳米颗粒 ,DNA、蛋白质等生物大分子等[3~ 11] .虽然自组装膜比LB膜稳定 ,但它也不耐极性溶剂、电解质水溶液等侵蚀 .如…  相似文献   

7.
以盖玻片为基质,采用Langmuir-Blodgett(LB)方法制备含磷酰胆碱基团的两亲性无规共聚物聚(2-甲基丙烯酰氧基乙基磷酰胆碱(MPC)-甲基丙烯酸十八烷基酯(SMA)-γ-甲基丙烯酰氧丙基三甲氧基硅(TSMA)(简称PMST)的单层、双层和三层薄膜.薄膜的表面亲疏水性和表面形貌分别用动态接触角(DCA)和原子力显微镜(AFM)进行测试.结果表明,PMST在盖玻片表面形成了致密的膜层,薄膜的致密程度随层数而增加.在水中前进/后退测试DCA过程中,聚合物薄膜在气相/水相界面存在基团的迁移取向,且膜层内会发生交联.双层膜具有仿细胞外层膜结构,单层和三层膜具有反细胞外层膜结构;双层膜的亲水性比单层和三层膜的要好.  相似文献   

8.
本文利用所合成的4'-(4''-重氮基)苯基-(2,2':6',2')-三联吡啶氟硼酸盐(Diazo-tpy)在紫外光照射下的光分解反应特性,实现三联吡啶基团与基片之间形成共轭价键连接,这不仅提高了自组装膜的稳定性,而且降低了载流子在两者之间传输时的阻抗;在此基础上,通过两端含三联吡啶的直线型配体1,4-二-(2,2':6',2'-三联吡啶)基苯(Bi-tpy)与四种过渡金属离子(Mtn+:Pt4+、Ru3+、Rh3+、Pd2+)之间的配位作用,通过层-层自组装制备了全共轭金属-有机自组装超薄功能膜。由紫外-可见光谱跟踪自组装过程证明了自组装过程的成功实现,还分析了金属离子的种类对自组装的影响规律。光电转换测试表明Bi-tpy/Ru3+自组装膜要比Bi-tpy/ Pt4+具有更明显的光电转换性能;同时,由于缺陷与阻抗随层数的增加而增大的原因,在自组装6层时光电流达到最大值。这为我们设计新型光电转换器件提供参考依据。  相似文献   

9.
立足于分子自组装单层膜的制备及结构, 讨论了分子自组装单层膜的头基基团与基底的作用机理、 主链与环境的温度依赖关系, 特别是其端基基团的化学性质及构象对表面浸润行为的影响. 重点讨论了分子自组装单层膜的端甲基基团对表面能的贡献、 极性端基基团与水分子之间的相互作用以及自组装单层膜表面的分子尺寸粗糙度对表面浸润的影响. 最后, 基于理论和实验基础对以上问题提出新的认知与看法, 并对未来该领域发展的机遇与挑战进行了展望.  相似文献   

10.
新型环氧树脂基液晶光定向层材料的合成与性能研究   总被引:2,自引:0,他引:2  
经双酚A型环氧树脂与苯胺缩聚反应,制备含有羟基的先驱聚合物EP-AN,通过EP-AN上羟基与肉桂酰氯的酯化反应,制备了侧链带有肉桂酸酯基团的光敏聚合物EP-AN-CI.用核磁共振(1HNMR)、傅里叶红外光谱(FTIR)和热分析等手段确定了上述聚合物的结构与性能.用FTIR等方法表征了EP-AN-CI的光交联反应.经线性偏振光聚合技术(LPP)处理聚合物EP-AN-CI膜制备成液晶定向层,通过装配液晶盒和偏光显微镜观察表明,所制备的定向层具有很好的定向能力,该聚合物是一类具有潜在应用价值的新型液晶光定向层材料.  相似文献   

11.
A novel photoalignment film for liquid crystals (LC) was prepared based on layer-by-layer self-assembly of photosensitive long side-chain cinnamate polyelectrolyte. A series of self-assembled films with different methylene spacer groups was prepared and used as alignment film. The film became anisotropic, and could induce uniform alignment of LC after irradiation by linearly polarised ultraviolet light (LPUVL). The effects of spacer chain lengths of the cinnamoyl polycations on the structure and photoalignment properties of the self-assembled film were studied. The polycation films with longer spacer chain obtained a larger dichroic ratio after LPUVL irradiation. The contrast ratio (T max/T min) of the LC cell increased with spacer chain length increase. However, it was found that the thermal stability of PSS/PACPYn films decreased with increasing chain length of polycation.  相似文献   

12.
A novel layer-by-layer (LBL) film containing dual photoreaction groups, cinnamoyl and azobenzene, was prepared from poly(diallyldimethylammonium chloride) (PDDA) and a photosensitive polyanion, PCAzo, in aqueous solution via electrostatic attraction. The film was able to induce uniform alignment of liquid crystals (LCs) with good stability and 2.3° pretilt angle by oblique irradiation with linearly polarised ultraviolet light (LPUVL). UV absorption and FTIR spectroscopic results indicate that the photoreactions of the two photoreactive groups jointly participate in generating the anisotropy of the film. The dichroic ratio of the film was found to depend on the number of adsorbed layers. The thicker film has the larger dichroic ratio after the LPUVL irradiation. The reorientation behaviour of the LC molecules was found to be associated with the LBL film thickness. Experiment results revealed that the photo-crosslinking of the cinnamoyl groups was responsible for the stability of the anisotropic orientation, and the isomerisation of the azobenzene chromophores led primarily to the appropriate pretilt angle.  相似文献   

13.
A novel photosensitive polyimide, poly(4,4'-stilbenylene 4,4'-oxidiphthalimide) (ODPA-Stilbene PSPI) was newly synthesized. The most surprising feature of this PSPI is that the PSPI films irradiated with linear polarized ultraviolet light (LPUVL) can favorably induce a unidirectional alignment of liquid crystals (LCs) in contact with the film surface and further switch the director of the unidirectionally aligned LCs from a perpendicular direction to a parallel direction with respect to the polarization direction of LPUVL by simply controlling the exposure dose in the irradiation process. These LPUVL-irradiated films were found to provide high anchoring energy to LCs, always giving very stable, homogeneous cells with unidirectionally aligned LCs regardless of the LC alignment directions. In the films, the PSPI polymer chains were found to undergo favorably unidirectional orientation via a specific orientation sequence of the polymer chain segments led by the directionally selective trans-cis photoisomerization of the stilbene chromophore units in the backbone induced by LPUVL exposure. Such unidirectionally oriented polymer chains of the films induce alignment of the LCs along the orientation direction of the polymer chains via favorable anisotropic molecular interactions between the oriented polymer chain segments and the LC molecules. In addition, the PSPI has an excellent film formation processibility; good quality PSPI thin films with a smooth surface are easily produced by simple spin-coating of the soluble poly(amic acid) precursor and subsequent thermal imidization process. In summary, this new PSPI is the promising LC alignment layer candidate with rubbing-free processing for the production of advanced LC display devices, including LC display televisions with large display areas.  相似文献   

14.
An alignment film derived from a photopolymerized self-assembled film may be used to orient nematic liquid crystals after irradiating the film with linearly polarized UV (LPUV). A photosensitive cationic amphiphile was first synthesized containing two double bonds and which could be polymerized by UV. A layer-by-layer self-assembled multilayer film was next prepared in an aqueous solution of the cationic amphiphile and poly(sodium 4-styrenesulphonate); the UV-Vis spectra showed that each layer of the LBL multilayer film was uniform. When the film was irradiated by LPUV, the photosensitive double bonds underwent [2+2] cycloaddition along the vector direction of LPUV. The polarized UV-Vis absorption spectra also provided evidence that the film was anisotropic, i.e. the photopolymerization was along a certain direction. The anisotropic film was used as an alignment layer for nematic liquid crystals, and observations under a polarizing microscope indicated that the alignment of the liquid crystals was good, as expected, and that the orientation direction of the liquid crystals was always perpendicular to the electric vector of the irradiating LPUV.  相似文献   

15.
An alignment film derived from a photopolymerized self‐assembled film may be used to orient nematic liquid crystals after irradiating the film with linearly polarized UV (LPUV). A photosensitive cationic amphiphile was first synthesized containing two double bonds and which could be polymerized by UV. A layer‐by‐layer self‐assembled multilayer film was next prepared in an aqueous solution of the cationic amphiphile and poly(sodium 4‐styrenesulphonate); the UV‐Vis spectra showed that each layer of the LBL multilayer film was uniform. When the film was irradiated by LPUV, the photosensitive double bonds underwent [2+2] cycloaddition along the vector direction of LPUV. The polarized UV‐Vis absorption spectra also provided evidence that the film was anisotropic, i.e. the photopolymerization was along a certain direction. The anisotropic film was used as an alignment layer for nematic liquid crystals, and observations under a polarizing microscope indicated that the alignment of the liquid crystals was good, as expected, and that the orientation direction of the liquid crystals was always perpendicular to the electric vector of the irradiating LPUV.  相似文献   

16.
In this paper, the polyanion-containing cinnamoyl group (PACSS-CF3) was self-assembled with diazoresin (DR) to form a kind of stable covalent ultrathin film by irradiation with 365?nm UV light. The photoalignment properties of the DR/PACSS-CF3 covalent film were investigated. The covalent film was found to have anisotropy after irradiation by 297?nm linearly polarised ultraviolet light (LPUVL), and could induce uniform alignment of liquid crystals (LCs). The pretilt angle of the LC was 2.5°. The stability of the film was enhanced by the covalent bonds. The films were thermally stable to 180°C. Polarised UV-Vis spectroscopy was utilised to investigate the photochemical process of the covalent film. It was found that cinnamoyl moieties parallel to the polarisation direction of the LPUVL were consumed by the photoreaction faster than those perpendicular to the polarisation direction. It can be concluded that the selective photoreaction induced the anisotropy of the films. The anisotropic films induced the homogeneous alignment of LC.  相似文献   

17.
This paper describes the buildup of hydrogen-bonding-directed poly(4-vinylpyridine)/poly(4-vinylphenol) (PVPy/PVPh) multilayer film that was fabricated by layer-by-layer (LbL) assembly of PVPy and PVPh from an ethanol solution. UV-visible spectroscopy and Fourier transform infrared (FT-IR) spectroscopy revealed a uniform deposition process. The interaction between PVPy and PVPh was identified as hydrogen bonding through FT-IR spectroscopy and temperature-dependent IR spectral changes of the hydrogen-bonded multilayer. Notably, we discussed the effect of solvent conditions on the growth of PVPy/PVPh multilayer films monitored by UV-visible spectroscopy. It was found that increasing the ratio of N,N-dimethylformamide (DMF) in the mixed ethanol/DMF solvents resulted in a marked decrease of the amount of polymers adsorbed, which was attributed to the increased polarity of the adsorption solutions. Furthermore, the solvent stability of PVPy/PVPh multilayer film in mixed ethanol/DMF solvents with different DMF ratios was also investigated. As a result, a new method for tuning the structure of hydrogen-bonding-directed multilayer film was developed.  相似文献   

18.
A series of poly[oxy(4‐n‐alkyl‐3,5‐benzoate)oxy‐1,4‐phenylenediacryloyl]s (PPDA‐CnBZ polymers) with high molecular weights was synthesized. These polymers exhibit excellent solubility in some common organic solvents and produce good quality films using conventional spin‐casting and drying processes. The polymers are thermally stable up to 357–362 °C in a nitrogen atmosphere; their glass transition temperatures are greater than 121 °C. The photoreactions and photoalignments of the polymers were investigated using ultraviolet‐visible and infrared spectroscopy, and their liquid crystal (LC) alignment properties were examined. The phenylenediacrylate (PDA) chromophores in the polyesters were found to mainly undergo photocyclization upon ultraviolet light irradiation. Irradiation of the polyester films with linearly polarized ultraviolet light (LPUVL) induces preferential orientation of the polymer main chains, while the unreacted PDA chromophores are aligned along the direction perpendicular to the electric vector of the LPUVL. All the films irradiated with LPUVL were found to align LCs in a direction perpendicular to the electric vector of the LPUVL. Moreover, these LC alignments persisted even on irradiated films annealed at temperatures up to 210 °C, which is much higher than the glass transition temperatures of the polyesters. These LC alignment characteristics are due to the anisotropic interactions of the LC molecules with the oriented polymer chains and with the unreacted PDA chromophores. LC alignments on the polyester film surfaces have homeotropic to homogeneous characteristics, depending on the length of the n‐alkyl side group, providing strong evidence that the n‐alkyl side groups of the polyesters play a critical role in determining the pretilt angles of the LCs. The LC pretilt angles were also found to be influenced by the thermal annealing history of the irradiated films. In summary, the excellent properties of the PPDA‐CnBZ polymers make them promising candidate materials for use as LC alignment layers in advanced LC display devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1322–1334, 2004  相似文献   

19.
A novel strategy based on self-assembly technology was devised for design of photosensitive material as a ferroelectric liquid crystal (FLC) alignment layer. This development offers new tools for the study and control at the molecular level of the interaction of FLCs with solid surfaces. The photoreactive material was self-assembled to the substrate by covalent bond linkage due to a special chemical adsorption reaction. Through ester bond linkage, a cyano group with strong polarity was introduced to be terminus of the film. Under irradiation of linearly polarised ultraviolet light, an optically anisotropic self-assembled film was easily obtained. The irradiated film was demonstrated to result in homogenous alignment of FLC by optical transmittance measurements and polarising optical microscopy images of a FLC cell at different rotation angles. The alignment quality of the FLC on this self-assembled monolayer film is comparable to that of commercial rubbed polyimide film. Furthermore, it was also found that the fine alignment of the FLC may be related to the smoothness of the self-assembled film surface owing to its polar end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号