首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Elusive early transition-metal perfluoroalkyl complexes have been isolated and structurally characterized for the first time. Trifluoromethyltrimethylsilane, CF3SiMe3, serves as an excellent trifluoromethyl group-transfer reagent and reacts with the known Ti(IV) fluoride complex Cp2TiF2 to yield the novel Ti(IV) trifluoromethyl fluoride compound, Cp2Ti(CF3)(F) (1). Reaction of complex 1 with trimethylsilyltriflate (Me3SiOTf) affords the Ti(IV) trifluoromethyl triflate complex Cp2Ti(CF3)(OTf) (2). Both titanium perfluoroalkyl compounds have been characterized spectroscopically and by single-crystal X-ray analysis. The Ti-CF3 linkage in these complexes is remarkably robust and shows no evidence of an alpha-fluoride interaction (Ti...F-CF2) between the electrophilic Ti(IV) metal center and any of the C-F bonds in the trifluoromethyl group in the solid state or in solution.  相似文献   

3.
Coordination of the carbocyclic ring of hydroquinones to electrophilic transition-metal fragments such as Mn(CO)3+ and Rh(COD)+ produces stable pi-bonded eta6-complexes that are activated to facile reversible deprotonation of the -OH groups. The deprotonations are accompanied by electron transfer to the transition metal, which acts as an internal oxidizing agent or electron sink. With manganese as the metal, the resulting eta5-semiquinone and eta4-quinone complexes have been used to synthesize one- two- and three-dimensional polymeric metal-organometallic coordination networks. With rhodium as the metal, the pi-quinonoid complexes have been demonstrated to play a unique role in multifunctional C-C coupling catalysis and in the synthesis of new organolithium reagents. Both classes of pi-quinonoid complexes appear to have significant applications in nanochemistry by providing an excellent vehicle for templating the directed self-assembly of nanoparticles into functional materials.  相似文献   

4.
This overview highlights recent progress in the field of selective construction of linear, oligonuclear transition-metal complexes by using solid-phase synthesis procedures. Two general protocols have been identified: formation of coordinative bonds between metal centres and bridging ligands and formation of covalent bonds between preformed kinetically inert transition-metal-containing building blocks in the chain growth step. Currently available suitable building blocks for the second approach are based on ferrocene units, bis(terpyridine)-ruthenium(II) moieties or metal porphyrins.  相似文献   

5.
This review aims at justifying the relationship between the room-temperature structures of transition-metal complexes and their thermal stabilities. The different factors affecting the thermal stability were also clarified. The survey of a larger number of transition-metal complexes showed various correlations of thermal stability with metal ion, ligand character or counterion.  相似文献   

6.
Manganese(II) chloride complexes with 3,4- and 3,5-lutidine have been prepared. The crystal symmetry and cell dimensions have been calculated on the basis of powder diffraction data. The compounds were characterised also by FT-IR spectrometry. The thermal decomposition of the complexes has been studied by thermogravimetry and DSC. By plotting densities vs. molar mass, the diagram obtained has correspondence to similar observations in other solid metal-lutidine complex systems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
A large number of transition-metal picoline halides were prepared, and their thermal decompositions were investigated by TG, DTG, DTA and thermomicroscopy. The compounds were classified on the basis of their thermal properties and two possible mechanisms of thermal decomposition were established.
Zusammenfassung Zahlreiche übergangsmetall-Picolin-Halide wurden dargestellt und deren thermische Zersetzung mittels TG, DTG, DTA und Thermomikroskopie untersucht. Die Verbindungen wurden nach ihren thermischen Eigenschaften klassifiziert, und zwei mögliche Mechanismen der thermischen Zersetzung sind angegeben.

, , , . .
  相似文献   

8.
9.
The preparation of first-row transition-metal complexes of texaphyrin, a porphyrin-like, monoanionic penta-aza macrocyclic ligand, is reported. Specifically, the synthesis of organic-soluble Mn(II) (1), Co(II) (2), Ni(II) (3), Zn(II) (4), and Fe(III) (5) texaphyrin derivatives and their water-soluble counterparts (6-10) from appropriate metal-free, nonaromatic macrocyclic precursors is described. It was found that metal cations of sufficient reduction potential could act to oxidize the nonaromatic macrocyclic precursor in the course of metal insertion. Complexes were characterized by X-ray diffraction analysis, electrochemistry, flash photolysis, and EPR spectroscopy. The structural and electronic properties of these "expanded porphyrin" complexes are compared with those of analogous porphyrins. Notably, the texaphyrin ligand is found to support the complexation of cations in a lower valence and a higher spin state than do porphyrins. Interactions between the coordinated cation and the ligand pi system appear to contribute to the overall bonding. Texaphyrin complexes of Mn(II), Co(II), and Fe(III) in particular may possess sufficient aqueous stability to permit their use in pharmaceutical applications.  相似文献   

10.
11.
12.
The hexakis(methylamine) complexes of nickel(II)-chloride, -bromide and -iodide have been prepared using-gas phase preparation procedure. The thermal decomposition starts with the release of four moles of the organic ligand. The bis(methylamine) intermediate decomposes in one step to the pure nickel(II) halide in the case of the chloride compound, however one and a half moles of methylamine containing intermediates were identified for the bromide and iodide analogues. The UV/VIS and the far IR spectra of the hexakis complexes show a typical octahedral environment around the central nickel(II) ion.Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday  相似文献   

13.
Cobalt(ii) diaryl complexes react with CO to afford Co(2)(CO)(8) and sterically encumbered ketones whose structure varies depending on the nature of the aryl ligands.  相似文献   

14.
New forms have been observed for oscillatory Briggs-Rauscher reactions catalyzed by macrocyclic nickel complexes. The number of oscillations in the reaction increases in the presence of cobalt complexes. Suggestions are made on how the catalysts act in these systems.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 30, No. 3, pp. 167–171, May–June, 1994.  相似文献   

15.
The DPP dyes (=diketopyrrolopyrrole) 1 are deprotonated to give the corresponding dianions 2. These are treated with two moles of the transition-metal complexes [L(n)MX]=[(Ph(3)P)(2)MX] (M=Cu, Ag; X=Cl, NO(3)), [(Ph(3)P)AuCl], [(Et(3)P)AuCl], [(tBuNC)AuCl], [(Ph(3)P)(2)PdCl(2)], and [(Ph(3)P)(2)PtCl(2)] to give the novel bismetalated DPP dyes [L(n)MN[C(3)R(1)(O)](2)NML(n)] (4-10). In comparison with the starting materials, these compounds show better solubilities, high fluorescence quantum yields (Phi > or = 80 %), and bathochromic absorptions. The compounds 4 c, 5 a, 6 b, 6 c, 6 e, 7 c, and 8 c were characterized by X-ray crystallography. The copper and silver atoms in 4 c and 5 a are trigonal planar and are surrounded by the P atoms of the phosphane ligands and the N atom of the DPP dianion 2. Both metals are somewhat forced out-of-plane, and the P(2)M plane and the phenyl planes of R1 are twisted by > or = 70 degrees and < or = 25 degrees, respectively, towards the chromophore plane. The gold atoms in 6-8 are linearly coordinated to one N and one P (6 b, c, e, 7 c) or one C atom (8 c), respectively. The gold atoms are only slightly pressed out-of-plane, and the P substituents are staggered so that there is enough space for the planarization of R(1) into the plane of the chromophore. Compound 8 c shows intermolecular d(10)-d(10) interactions between Au(I) centers of different molecules, and these interactions lead to infinite chains of parallel orientated molecules in a gauche conformation of neighbors (torsion angle=150 degrees) in the crystal.  相似文献   

16.
17.
A binaphthyl-linked bipyridyl compound, 1,1′-bis(6-methyl-6′-oxymethylenyl-2,2′-bipyridine)binaphthyl, (L) has been synthesised and used as a ligand for the formation of Cu(II), Ni(II), and Co(II) complexes. The ligand and its transition-metal complexes were characterized by physico-chemical and spectroscopic methods. The complexes were also investigated for cytotoxic activity. The cytotoxicity of complexes, CuL(ClO4)2, NiL(ClO4)2(H2O), CoL(ClO4)2, were tested in vitro applying seven well-characterized human tumor cell lines, MCF7, EVSA-T, WIDR, IGROV, M19 MEL, A498, H226, and the microculture sulforhodamine B (SRB) test. All complexes show a very high cytotoxicity (ID50 < 250 ng/ml) in these cell lines.  相似文献   

18.
Interactions between a pair of transition-metals can range from weak antiferromagnetic coupling to bonds of the highest multiplicity known in chemistry, for example, quadruple in isolatable compounds. Tremendous effort has been invested in studying homodinuclear transition-metal-metal bonds. In contrast, relatively little attention has been devoted to heterodinuclear analogues, as it is substantially more challenging to prepare and handle such entities. Yet, in this largely unexplored area of transition-metal chemistry, novel chemical interactions with unprecedented reactivities are likely to be found. Heterodinuclear analogues of diatomic transition-metal dimers being yet inaccessible, dinuclear complexes with Werner-type ligands provide examples of high-multiplicity bonds between different d elements in their least-perturbed form. Such compounds provide an opportunity to probe fundamental issues of chemical bonding between transition-metals, by revealing how and to what extent such bonds are affected by differences in the two metals. Complexes wherein electronically unsaturated heterodinuclear cores are stabilized by pi-acidic ligands (such as CO) hold the potential of new chemical reactions (including catalytic) that capitalize on the synergetic effect of two transition-metal centers.  相似文献   

19.
Transition-metal chemistry in ionic liquids (IL) has achieved intrinsic fascination in the last few years. The use of an IL as environmental friendly solvent, offers many advantages over traditional materials synthesis methods. The change from molecular to ionic reaction media leads to new types of materials being accessible. Room-temperature IL have been found to be excellent media for stabilising transition-metal clusters in solution and to crystallise homo- and heteronuclear transition-metal complexes and clusters. Furthermore, the use of IL as solvent provides the option to replace high-temperature routes, such as crystallisation from the melt or gas-phase deposition, by convenient room- or low-temperature syntheses. Inorganic IL composed of alkali metal cations and polynuclear transition-metal cluster anions are also known. Each of these areas will be discussed briefly in this contribution.  相似文献   

20.
《Polyhedron》1986,5(4):1023-1025
Various complexes of bivalent transition metals with diamines have been synthesized and studied “in vitro” with a diamine oxidase. The inhibition type and Ki value of these compounds have been determined. For the linear-chain diamine complexes the inhibition was competitive and the highest inhibition was for the 1,3-diaminopropane-copper complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号