首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystals of a hydrazinium-based copper(I) sulfide salt, N4H9Cu7S4 (1), have been isolated by an ambient temperature solution-based process. In contrast to previously reported hydrazinium salts of main-group metal chalcogenides, which consist of isolated metal chalcogenide anions, and ACu7S4 (A = NH4+, Rb+, Tl+, K+), which contains a more three-dimensional Cu7S4- framework with partial Cu-site occupancy, the structure of 1 [P21, a = 6.8621(4) A, b = 7.9851(4) A, c = 10.0983(5) A, beta = 99.360(1) degrees , Z = 2] is composed of extended two-dimensional Cu7S4- slabs with full Cu-site occupancy. The Cu7S4- slabs are separated by a mixture of hydrazinium and hydrazine moieties. Thermal decomposition of 1 into copper(I) sulfide proceeds at a significantly lower temperature than that observed for analogous hydrazinium salts of previously considered metal chalcogenides, completing the transition at temperatures as low as 120 degrees C. Solutions of 1 may be used in the solution deposition of a range of Cu-containing chalcogenide films.  相似文献   

2.
1 INTRODUCTION The chemistry of mixed 15/16 main group compounds has attracted great attentions over the last years[1]. The metal chalcogenophosphides synthesized by solid state reactions[2] are the potential candidates for a wide range of applications such as semiconducting properties, two-dimensional magnetic behavior, anisotropy of conductivity and charge density waves. Some of these compounds are of lamellar structure, which are good materials for the investigation of intercalatio…  相似文献   

3.
A synthetic route for producing Cu(2)ZnGeSe(4) nanocrystals with narrow size distributions and controlled composition is presented. These nanocrystals were used to produce densely packed nanomaterials by hot-pressing. From the characterization of the thermoelectric properties of these nanomaterials, Cu(2)ZnGeSe(4) is demonstrated to show excellent thermoelectric properties. A very preliminary adjustment of the nanocrystal composition has already resulted in a figure of merit of up to 0.55 at 450 °C.  相似文献   

4.
The novel copper(I)-thioantimonates(III) (C(6)N(2)H(18))(0.5)Cu(2)SbS(3) (I) (C(6)N(2)H(16) = 1,6-diaminohexane), (C(4)N(3)H(15))(0.5)Cu(2)SbS(3) (II) (C(4)N(3)H(13) = diethylenetriamine), (C(8)N(4)H(22))(0.5)Cu(2)SbS(3) (III) (C(8)N(4)H(20) = 1,4-bis(2-aminoethyl)piperazine), (C(4)N(3)H(14))Cu(3)Sb(2)S(5) (IV) (C(4)N(3)H(13) = diethylenetriamine), and (C(6)N(4)H(20))(0.5)Cu(3)Sb(2)S(5) (V) (C(6)N(4)H(18) = triethylenetetramine) were synthesized under solvothermal conditions reacting Sb, Cu, and S with the amines. The compounds I-III belong to the RCu(2)SbS(3) structure family (R = amine) and are built up of trigonal SbS(3) pyramids and two CuS(3) moieties forming 6-membered (6 MR) and 10-membered (10 MR) rings. The rings are condensed yielding single layers which are joined into [Cu(2)SbS(3)](-) double layers via Cu-S bonds. The organic ions are located between the anionic layers, and the shortest interlayer distances are 7.8 Angstroms (I), 7.4 Angstroms (II), and 8.8 Angstroms (III). The structure of the novel inorganic-organic hybrid compound IV contains one SbS(3) group, one SbS(4) unit, two CuS(3) triangles, and one CuS(4) tetrahedron. These units are joined into four-membered (4 MR) and six-membered rings (6 MR) forming a hitherto unknown strong undulated layered (Cu(3)Sb(2)S(5))(-) anion. Anions and cations are arranged in a sandwichlike manner with an interlayer distance of 6.184 A. The new composite V contains an anion with the same chemical composition as compound IV, but the structure exhibits a unique and different network topology which is constructed by two SbS(3) pyramids, two CuS(3) triangles, and one CuS(4) tetrahedron. These units are joined into 6 MR which may be described as an inorganic graphene-like layer or as a 6(3) net. Two such layers are connected via Cu-S bonds into the final double layer. The interlayer distance amounts to 6.44 Angstroms. All compounds decompose in a more or less complex manner when heated in an inert atmosphere.  相似文献   

5.
[(CH3)4N]2Zn0.5Cu0.5Cl4 shows an orthorhombic system at ambient temperature with P2(1)nb space group. At room temperature, the crystal consists of three sublattices constituted by MCl4 (M=Cu and Zn) and two tetramethylammoniums N1(CH3)4 and N2(CH3)4, which give rise to a total of 372 vibrational modes that transform according to the four irreductible representations of the C2v point group in the following way: Gamma(vib)=93(A1+A2+B1+B2). The infrared and Raman spectra of polycrystalline samples have been investigated at room temperature. The assignment of the observed bands is discussed.  相似文献   

6.
Hydrothermal reaction of Cu(MeCO2)2, (4-pyridylthio)acetic acid, and NH4SCN resulted in a metal-organic framework [Cu3(4-pyridinethiolate)2(CN)] which has twelve-connected face-centered cubic topology with Cu6S4 clusters as nodes.  相似文献   

7.
Vega A  Saillard JY 《Inorganic chemistry》2004,43(13):4012-4018
DFT calculations on Cu(4)(mu3-X)4L4 (X = H, CH(3), CCH, F, Cl, Br, I; L = NH(3), PH(3)) indicate that, regardless of its nature, X- acts essentially as a two-electron sigma-type ligand and that the covalent part of the Cu...Cu bonding depends mainly upon the a1 component of the orbital interaction between the L4Cu4(4+) and X4(4-) fragments. The first excited state corresponds to the occupation of a Cu...Cu bonding LUMO of a1 symmetry, which is of dominant Cu(4s/4p) character when X- is an electronegative ligand, such as a halide. Consequently, this excited state is computed to exhibit Cu...Cu distances shorter than those in the ground state, in agreement with the luminescence properties of this type of compound.  相似文献   

8.
Three malonato-bridged copper(II) complexes of the formulas [[Cu(H2O)3][Cu(C3H2O4)2(H2O)]]n (1), [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]] [Cu(C3H2O4)2(H2O)2][[Cu(H2O)4][Cu(C3H2O4)2(H2O)2]] (2), and [Cu(H2O)4][Cu(C3H2O4)2(H2O)2] (3) (C3H2O4 = malonate dianion) have been prepared, and the structures of the two former have been solved by X-ray diffraction methods. The structure of compound 3 was already known. Complex 1 crystallizes in the orthorhombic space group Pcab, Z = 8, with unit cell parameters of a = 10.339(1) A, b = 13.222(2) A, and c = 17.394(4) A. Complex 2 crystallizes in the monoclinic space group P2/c, Z = 4, with unit cell parameters of a = 21.100(4) A, b = 21.088(4) A, c = 14.007(2) A, and beta = 115.93(2) degrees. Complex 1 is a chain compound with a regular alternation of aquabis(malonato)copper(II) and triaquacopper(II) units developing along the z axis. The aquabis(malonato)copper(II) unit acts as a bridging ligand through two slightly different trans-carboxylato groups exhibiting an anti-syn coordination mode. The four carboxylate oxygens, in the basal plane, and the one water molecule, in the apical position, describe a distorted square pyramid around Cu1, whereas the same metal surroundings are observed around Cu2 but with three water molecules and one carboxylate oxygen building the equatorial plane and a carboxylate oxygen from another malonato filling the apical site. Complex 2 is made up of discrete mono-, di-, and trinuclear copper(II) complexes of the formulas [Cu(C3H2O4)2(H2O)2]2-, [[Cu(H2O)4] [Cu(C3H2O4)2(H2O)2]], and [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]]2+, respectively, which coexist in a single crystal. The copper environment in the mononuclear unit is that of an elongated octahedron with four carboxylate oxygens building the equatorial plane and two water molecules assuming the axial positions. The neutral dinuclear unit contains two types of copper atoms, one that is six-coordinated, as in the mononuclear entity, and another that is distorted square pyramidal with four water molecules building the basal plane and a carboxylate oxygen in the apical position. The overall structure of this dinuclear entity is nearly identical to that of compound 3. Finally, the cationic trimer consists of an aquabis(malonato)copper(II) complex that acts as a bismonodentate ligand through two cis-carboxylato groups (anti-syn coordination mode) toward two tetraaqua-copper(II) terminal units. The environment of the copper atoms is distorted square pyramidal with four carboxylate oxygens (four water molecules) building the basal plane of the central (terminal) copper atom and a water molecule (a carboxylate oxygen) filling the axial position. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-290 K. Overall, ferromagnetic behavior is observed in the three cases: two weak, alternating intrachain ferromagnetic interactions (J = 3.0 cm-1 and alpha J = 1.9 cm-1 with H = -J sigma i[S2i.S2i-1 + alpha S2i.S2i+1]) occur in 1, whereas the magnetic behavior of 2 is the sum of a magnetically isolated spin doublet and ferromagnetically coupled di- (J3 = 1.8 cm-1 from the magnetic study of the model complex 3) and trinuclear (J = 1.2 cm-1 with H = -J (S1.S2 + S1.S3) copper(II) units. The exchange pathway that accounts for the ferromagnetic coupling, through an anti-syn carboxylato bridge, is discussed in the light of the available magneto-structural data.  相似文献   

9.
A combined photoelectron spectroscopy (PES) and ab initio study was carried out on a novel copper carbide cluster in the gas phase: Cu(3)C(4)(-). It was generated in a laser vaporization cluster source and appeared to exhibit enhanced stability among the Cu(3)C(n)(-) series. Its PES spectra were obtained at several photon energies, showing numerous well-resolved bands. Extensive ab initio calculations were performed on Cu(3)C(4)(-), and two isomers were identified: a C(2) structure ((1)A) with a Cu(3)(3+) triangular group sandwiched by two C(2)(2-) units and a linear CuCCCuCCCu structure (D(infinity)(h), (1)Sigma(g)(+)). A comparison of ab initio PES spectra with experimental data showed that the sandwich Cu(3)C(4)(-) cluster was solely responsible for the observed spectra and the linear isomer was not present, suggesting that the C(2) structure is the global minimum in accordance with CCSD(T)/6-311+G predictions. Interestingly, a relatively low barrier (0.4-0.6 kcal/mol) was found for the internal rotation of the C(2)(2-) units in the sandwich Cu(3)C(4)(-). To test different levels of theory in describing the Cu(m)C(n)(-) systems and lay foundations for the validity of the theoretical methods, extensive calculations at a variety of levels were also carried out on a simpler copper carbide species CuC(2)(-), where two isomers were found to be close in energy: a linear one (C(infinity)(v), (1)Sigma(+)) and a triangular one (C(2)(v), (1)A(1)). The calculated electronic transitions for CuC(2)(-) were also compared with the PES data, in which both isomers were present.  相似文献   

10.
Hao ZM  Fang RQ  Wu HS  Zhang XM 《Inorganic chemistry》2008,47(18):8197-8203
Hydrothermal reaction of Cu(MeCO2)2, (4-pyridylthio)acetic acid and NH4SCN resulted in a twelve-connected face-centered cubic topological metal-organic framework [Cu3(pdt)2(CN)] (pdt = pyridinethiolate) in which Cu6S4 clusters act as twelve-connected nodes and pyridine rings and cyanides act as connectors. As an extension, an unprecedented fourteen-connected body-centered cubic coordination polymer [Cu19I4(pdt)12(SH)3] has been synthesized by three methods, in which nanosized chiral Cu19I4S12 clusters act as fourteen-connected nodes and triple pyridine rings and hydrosulfides act as connectors. The in situ S-C(sp(3)), S-C(sp(2)), and S-C(sp) cleavage reactions have been observed in the work.  相似文献   

11.
The reactions of a Cu(II) salt, MoO(3), and the appropriate bipyridine ligand yield a series of bimetallic oxides, [Cu(3,4'-bpy)MoO(4)] (1), [Cu(3,3'-bpy)(0.5)MoO(4)] (2), and [Cu(4,4'-bpy)(0.5)MoO(4)].1.5H(2)O (3.1.5H(2)O). The structures of 1-3 exhibit three-dimensional covalent frameworks, constructed from bimetallic oxide layers tethered by the dipodal organoimine ligands. However, the [CuMoO(4)] networks are quite distinct. For structure 1, the layer consists of corner-sharing [MoO(4)] tetrehedra and [CuN(2)O(3)] square pyramids, while the layer of 2 is constructed from [MoO(4)] tetrehedra and binuclear [Cu(2)O(6)N(2)] units of edge-sharing copper square pyramids. The oxide substructure of 3 consists of [MoO(4)] tetrahedra corner-sharing with tetranuclear clusters of edge-sharing [CuO(5)N] octahedra. Crystal data: C(10)H(8)N(2)O(4)CuMo (1), orthorhombic Pbca, a = 12.4823(6) A, b = 9.1699(4) A, c = 19.5647(9) A, V = 2239.4(1) A(3), Z = 8; C(5)H(4)NO(4)CuMo (2), triclinic P, a = 5.439(1) A, b = 6.814(1) A, c = 10.727(2) A, alpha = 73.909(4)(o), beta = 78.839(4)(o); gamma = 70.389(4)(o); V = 357.6(1) A(3), Z = 2; C(10)H(8)N(2)O(8)Cu(2)Mo(2).3H(2)O 3.1.5H(2)O, triclinic P, a = 7.4273(7) A, b = 9.2314(8) A, c = 13.880(1) A, alpha = 71.411(2)(o), beta = 88.528(2)(o), gamma = 73.650(2)(o), V = 863.4(1) A(3), Z = 2. The magnetic properties of 1-3 arise solely from the presence of the Cu(II) sites, but reflect the structural differences within the bimetallic oxide layers. Compound 1 exhibits magnetic behavior consistent with ferromagnetic chains which couple antiferromagnetically at low temperature. Compound 2 exhibits strong antiferromagnetic dimeric interactions, with the magnetic susceptibility data consistent with the Bleaney-Bowers equation. Similarly, the magnetic susceptibility of 3 is dominated by antiferromagnetic interactions, which may be modeled as a linear S = 1/2 Heisenberg tetramer.  相似文献   

12.
We report on the syntheses, crystal structures, and magnetic susceptibilities of a family of copper pyrazine (pz)-based antiferromagnets with moderate in-plane magnetic exchange. These materials fall into two classes: monoclinic complexes [Cu(pz)2]A2 for A = ClO4 (1) or BF4 (2) and the tetragonal complex [Cu(pz)2(NO3)]PF6 (3). Compound 1 and its deuterated version [Cu(pz-d4)2](ClO4)2 (1a) crystallize in the space group C2/m at room temperature with disordered perchlorate anions. For both 1 and 2, the C centering of the Cu(II), S = 1/2, site yields four equivalent nearest neighbors, producing layers of Cu(II) ions bridged by the pz molecules, which map onto a square magnetic lattice. The layers are offset such that Cu(II) ions lie above and below the holes of adjacent layers. Compound 3 crystallizes in the space group I4/mcm with a layer structure similar to those of 1 and 2 but with Cu(II) ions of adjacent layers stacked above each other and bridged by semicoordinate NO3- ions. The variable-temperature susceptibilities in these compounds approximate a two-dimensional Heisenberg antiferromagnet with J values within the layers of 17.5(3) K (1), 15.3(3) K (2), and 10.8(3) K (3). Ordering transitions are observed in the magnetic data at 4.2(3) and 4.3(5) K for 1 and 2, respectively.  相似文献   

13.
Cu~(2+)掺杂LiFePO_4的制备及其电化学性能   总被引:1,自引:0,他引:1  
应用固相反应法合成LiFePO4及掺杂Cu2+的LiFePO4,以XRD、XPS表征样品的结构及Fe存在的价态.发现掺杂少量的Cu2+未能改变LiFePO4材料的结构特征以及Fe2+的化学状态,但是Cu2+的掺杂使得LiFePO4材料的晶胞体积变小.充放电测试结果表明少量Cu2+的掺杂能显著地提高LiFePO4材料的大倍率输出能力,LiCu0.02Fe0.98PO4,其1C放电容量可达130 mAh/g以上,较掺杂前提高了20%左右.  相似文献   

14.
Sun ZM  Xia SQ  Huang YZ  Wu LM  Mao JG 《Inorganic chemistry》2005,44(25):9242-9246
The new ternary polar intermetallic phase, Ca6Cu2Sn7, has been synthesized by the solid-state reaction of the stoichiometric mixture of the pure elements in welded Ta tubes at high temperature. Its structure was established by single-crystal X-ray diffraction studies. Ca6Cu2Sn7 crystallizes in the monoclinic space group C2/m (No. 12) with cell parameters of a=14.257(7), b=4.564(2), and c=12.376(7) A, beta=93.979(6) degrees, V=803.3(7) A3, and Z=2. The structure of Ca6Cu2Sn7 belongs to a new structure type and features a 3D anionic open-framework composed of [Cu2Sn3] layers interconnected by unusual Sn4 tetramers, forming large tunnels along the b axis which are composed of Cu4Sn12 16-membered rings. The calcium atoms are located in these large tunnels. Ca6Cu2Sn7 is metallic and exhibits temperature-independent paramagnetism.  相似文献   

15.
The methanolothermal reaction of (S)-1,4-diallyl-2-methylpiperazine (DAMP) with an excess CuBr affords a novel homochiral 3D framework (DAMP)3(Cu4Br4)2(H2O)3 (1) in which Cu4Br4 cubane acts as a connecting node to mimic the pure inorganic role in the ferroelectricity to enhance the remnant polarization value which is comparable to that of BaTiO3 synthesized by peptide-assisted synthesis.  相似文献   

16.
1INTRODUCTION The construction of metal-organic coordination polymers based on covalent interactions[1]or supra-molecular contacts such as hydrogen-bonding and/orπ-πinteractions)[2]is now of great interest not only due to the enormous variety of intriguing structural topologies themselves,but also to their unexpected physical and chemical properties for potential prac-tical applications as functional materials.Many N-containing ligands,such as4,4?-bipyridine,2,2?-bi-pyridine and1,10-phen…  相似文献   

17.
Cu(II)在对甲苯磺酸铜+DMSO中的电还原   总被引:19,自引:0,他引:19  
制备了对甲苯磺酸铜并首次用于电化学实验.差示扫描量热和热重曲线测定表明,对甲苯磺酸铜结晶容易脱除全部结晶水,无水盐在空气中不潮解.用循环伏安曲线、计时电流曲线和恒电流电解后的电位-时间曲线研究Cu(Ⅱ)在二甲基亚砜(DMSO)溶液中的电还原.结果表明, Cu(II)电还原为Cu的反应分两步进行,其中第一步是可逆过程.测定了Cu(II)在DMSO溶液中的扩散系数.  相似文献   

18.
多种有机发光材料已被应用于电致发光(EL)器件的制备,其荧光效率远比无机发光材料高。与光激发直接产生单重态洋鬼子不同,电致发光过程是电子空穴分别由相反极性的电极注入(非成对电子注入),三重态和单重态激子同时生成,按自旋统计理论预测,三重态和单重态子的比例为3:1。由于三重态的跃迁是自旋禁阻的,大部分有机分子的三重态激子发光效率极低,有机电致发光器件的最高交率限制在25%(对于光致发光效率100%的理想情况)。为进一步提高器件效率,人们开始设想和实施对通常认为是无效激发的75%的三重激发态进行利用,其关键是筛选出适于器件应用的高效率三重态发光材料,据此我们选择过渡金属配合物Cu4(C≡CPh4)4L2[L=1,8-bis9diphenyl phosphino)-3,6-dioxaoctane](以下简称Cu4)进行了器件性能研究。  相似文献   

19.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

20.
Lang JP  Xu QF  Zhang WH  Li HX  Ren ZG  Chen JX  Zhang Y 《Inorganic chemistry》2006,45(26):10487-10496
In our working toward the rational design and synthesis of cluster-based supramolecular architectures, a set of new [WS4Cu4]- or [MoOS3Cu3]-based supramolecular assemblies have been prepared from reactions of preformed cluster compounds [Et4N]4[WS4Cu4I6] (1) and [(n-Bu)4N]2[MoOS3Cu3X3] (2, X = I; 3, X = SCN) with flexible ditopic ligands such as dipyridylsulfide (dps), dipyridyl disulfide (dpds), and their combinations with dicyanamide (dca) anion and 4,4'-bipy. The cluster precursor 1 reacted with dps or dpds and sodium dicyanamide (dca) in MeCN to produce [WS4Cu4I2(dps)3].2MeCN (4.2MeCN) and [WS4Cu4(dca)2(dpds)2].Et2O.2MeCN (5.Et2O.2MeCN), respectively. On the other hand, treatment of 2 with dpds in DMF/MeCN afforded [MoOS3Cu3I(dpds)2].0.5DMF.2(MeCN)0.5 (6.0.5DMF.2(MeCN)0.5) while reaction of 3 with sodium dicyanamide (dca) and 4,4'-bipy in DMF/MeCN gave rise to [MoOS3Cu3(dca)(4,4'-bipy)1.5].DMF.MeCN (7.DMF.MeCN). Compounds 4.2MeCN, 5.Et2O.2MeCN, 6.0.5DMF.2(MeCN)0.5, and 7.DMF.MeCN have been characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray crystallography. Compound 4 contains a 2D layer array made of the saddle-shaped [WS4Cu4] cores interlinked by three pairs of Cu-dps-Cu bridges. Compound 5 has another 2D layer structure in which the [WS4Cu4] cores are held together by four pairs of Cu-dca-Cu and Cu-dpds-Cu bridges. Compound 6 displays a 1D spiral chain structure built of the nido-like [MoOS3Cu3] cores via two pairs of Cu-dpds-Cu bridges. Compound 7 consists of a 2D staircase network in which each [MoOS3Cu3(4,4'-bipy]2 dimeric unit interconnects with four other equivalent units by a pair of 4,4'-bipy ligands and two pairs of dca anions. The [WS4Cu4] core in 4 or 5 and the [MoS3Cu3] core in 7 show a planar 4-connecting node and a seesaw-shaped 4-connecting node, respectively, which are unprecedented in cluster-based supramolecular compounds. The successful assembly of 4-7 from the three cluster precursors 1-3 through flexible ditopic ligands provides new routes to the rational design and construction of complicated cluster-based supramolecular arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号