首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cylindrically symmetric inhomogeneous cosmological model for bulk viscous fluid distribution with electro- magnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. F12 is the non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion 0 in the model is proportional to the shear σ. The values of cosmological constant for these models are found to be small and positive at late time, which are consistent with the results from recent supernovae Ia observations. Physical and geometric aspects of the models are also discussed in presence and absence of magnetic field.  相似文献   

2.
王行翔 《中国物理快报》2006,23(7):1702-1704
The Bianchi type-Ⅲ cosmological model for a cloud string in the presence of bulk viscosity and magnetic field are presented. To obtain the determinate model it is assumed that there is an equation of state ρ = kA and the scalar of expansion is proportional to the shear scalar θ ∝ σ, which leads to a relation between metric potentials B = mC^n. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start. In the absence of magnetic field, it reduces to the string model with bulk viscosity that was previously given in the literature.  相似文献   

3.
Exact solution of Einstein's field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (1983) in presence of perfect fluid and electromagnetic field. To get the deterministic solution of the field equations the expansion 0 in the model is considered as proportional to the eigen value σ2^2of the shear tensor σi^j and also the fluid obeys the barotropic equation of state. It is observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. It is also observed that the string phase of the universe disappears in our model because particle density becomes negative. Some physical and geometric properties of the model are also discussed.  相似文献   

4.
We investigate the Bianchi type-V magnetized string cosmological model with variable magnetic permeability for viscous fluid distribution. The magnetic field is due to an electric current produced along the x-axis. Thus the magnetic field is in yz-plane and F23 is the only non-vanishing component of electromagnetic field tensor Fij. To obtain the deterministic model in terms of cosmic time t, we assume the condition ξθ const where ξ is the coefficient of bulk viscosity and θ the expansion in the model.  相似文献   

5.
Einstein's field equations with C and A both varying with time are considered in the presence of a perfect fluid for five-dimensional cosmological model in a way which conserves the energy momentum tensor of the matter content. Several sets of explicit solutions in the five-dimensional Kaluza-Klein type cosmological models with variable G and A are obtained. The diminishment of extra dimension with the evolution of the universe for the five-dimensional model is exhibited. The physical properties of the models are examined.  相似文献   

6.
Bianchi type-Ⅲ string cosmological models with bulk viscous fluid for massive string are investigated. To obtain the determinate model of the universe, we assume that the coeffcient of bulk viscosity ξ is inversely proportional to the expansion θ in the model and expansion θ in the model is proportional to the shear g. This leads to B =lC^n, where l and n are constants. Behaviour of the model in the presence and absence of bulk viscosity is discussed. The physical implications of the models are also discussed in detail.  相似文献   

7.
The magnetohydrodynamic(MHD) steady and unsteady axisymmetric flows of a viscous fluid over a two-dimensional shrinking sheet are addressed. The mathematical analysis is carried out in the presence of a large magnetic field. The steady state problem results in a singular perturbation problem having an infinite domain singularity. The secular term appearing in the solution is removed and a two-term uniformly valid solution is derived using the Lindstedt–Poincaré technique. This asymptotic solution is validated by comparing it with the numerical solution. The solution for the unsteady problem is also presented analytically in the asymptotic limit of large magnetic field. The results of velocity profile and skin friction are shown graphically to explore the physical features of the flow field. The stability analysis of the unsteady flow is made to validate the asymptotic solution.  相似文献   

8.
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. HeatMass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter ~, solid volume fraction tp, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.  相似文献   

9.
Bianchi type I string dust cosmological models in the presence and absence of magnetic field in the frame work of Lyra geometry are investigated. To get the deterministic model of the universe, we assume that the eigenvalue (σ^11) of shear tensor (σ^ii) is proportional to expansion (θ). This leads to A = (BC)^n, where A, B, C are metric potentials and n is a constant. To discuss the results in terms of cosmic time t, we have considered n = 1. The physical and geometrical aspects' of the models and singularities in the models are also discussed.  相似文献   

10.
A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electro-magnetic field is obtained. F12 is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, we assume the free gravitational field is Petrov type-Ⅱ non-degenerate. Some physical and geometric properties of the model are also discussed.  相似文献   

11.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

12.
We deal with Einstein's field equations with a time-decaying cosmological term of the forms (i) ∧=β(a/a) + α/a62 and (ii)∧ = α/a^2, where a is the average scale factor of the universe, α and β are constants for a spatially homogeneous and anisotropic LRS Bianchi type-Ⅱ spacetime. Exact solutions of the field equations for stiff matter are obtained by applying a special law of variation for the Hubble parameter. Anisotropic cosmological models are presented with a constant negative deceleration parameter which corresponds to the accelerated phase of the present universe. The cosmological constant A is obtained as a decreasing function of time that is approaching a small positive value at the present epoch, which is corroborated by the consequences from recent supernovae Ia observations. The physical and kinematical behaviors of the models are also discussed.  相似文献   

13.
Taking the cosmological expansion rate directly as a function of field , H = H( ), we present a new exact solution to Einstein‘s equations that describe the evolution of cosmological chaotic inflation model. The inflation is driven by the evolution of scalar field with inflation potential V( ) = λ 2 v2)2.8 ( 2- 2)2.The spectral indices of the scalar density ns and gravitational wave fluctuations ng are computed. The value of ns lies well inside the limits set by the cosmic background explorer satellite.  相似文献   

14.
The effects of spin-spin interaction on thermed entanglement of a two-qubit Heisenberg XYZ model with different inhomogeneous magnetic fields are investigated. It is shown that the entanglement is dependent on the spin-spin interaction and the inhomogeneous magnetic fields. The larger the Ji (i-axis spin-spin interaction), the higher critical value the Bi (i-axis uniform magnetic field) has. Moreover, in the weak-field regime, the larger Ji corresponds to more entanglement, while in the strong-field regime, different Ji correspond to the same entanglement. In addition, it is found that with the increase of Ji, the concurrence can approach the maximum value more rapidly for the smaller Bi, and can reach a larger value for the smaller bi (i-axis nonuniform magnetic field). So we can get more entanglement by increasing the spin-spin interaction Ji, or by decreasing the uniform magnetic field Bi and the nonuniform magnetic field hi.  相似文献   

15.
This work reports the effects of magnetic field on an electrically conducting fluid with low electrical conductivity flowing in a smooth expanded channel. The governing nonlinear magnetohydrodynamic (MHD) equations in induction- free situations are derived in the framework of MHD approximations and solved numerically using the finite-difference technique. The critical values of Reynolds number (based on upstream mean velocity and channel height) for symmetry breaking bifurcation for a sudden expansion channel (1:4) is about 36, whereas the value in the case of the smooth expansion geometry used in this work is obtained as 298, approximately (non-magnetic case). The flow of an electrically conducting fluid in the presence of an externally applied constant magnetic field perpendicular to the plane of the flow is reduced significantly depending on the magnetic parameter (M). It is expansion (1:4) is about 475 for the magnetic parameter M found that the critical value of Reynolds number for smooth = 2. The separating regions developed behind the smooth symmetric expansion are decreased in length for increasing values of the magnetic parameter. The bifurcation diagram is shown for a symmetric smoothly expanding channel. It is noted that the critical values of Reynolds number increase with increasing magnetic field strength.  相似文献   

16.
We develop the quasi-one-dimensional flux tube model with magnetohydrodynamical equations.In order to know whether the magnetic field can maintain their similar structure from photosphere to chromosphere,we suppose that the flux tube is thin in radius relative to the length,and that the quantities in the cross section are averaged.The radii of the flux tube and the magnetic field are numerically simulated.One of the important results shows that the flux tube does not expand as quickly as the existing model when it is out of the photoxphere with high velocity.This is consistent with observations of the magnetic field in the photosphere and chromosphere.  相似文献   

17.
任金忠  邵晓强  张寿  Yeon Kyu-Hwang 《中国物理 B》2010,19(10):100307-100307
Pairwise thermal entanglement in a three-qubit Heisenberg XX model is investigated when a nonuniform magnetic field and the Dzyaloshinski-Moriya interaction are included. We find that the nonuniform magnetic field and Dzyaloshinski-Moriya interaction are the more efficient control parameters for the increase of entanglement and critical temperature. For both the nearest neighbour sites and the next nearest neighbour sites, the magnetic field can induce entanglement to a certain extent and the Dzyaloshinski-Moriya interaction can enhance the entanglement to a stable value. The steady value of the nearest neighbour site entanglement C 12 is larger than the next nearest neighbour site entanglement C 13 . An interesting phenomenon is that the entanglement curve of C 12 appears a peak value when the Dzyaloshinski-Moriya interaction is considered in a nonuniform magnetic field.  相似文献   

18.
With the Nambu–Jona-Lasinio(NJL) model we calculate the properties of pion and σ-meson at finite temperature and finite magnetic field. The obtained temperature and magnetic field strength dependence of the constituent quark mass M, the pion and σ-meson masses and the neutral pion decay constant indicates that, in the simple four fermion interaction model, there exists the magnetic catalysis effect. It also shows that the Gell-Mann–Oakes–Renner relation is violated obviously with the increasing of the temperature, and the effect of the magnetic field becomes pronounced only around the critical temperature. The deviation of the critical temperatures obtained with different criteria indicates that the chiral phase transition driven by the temperature in the magnetic field strength region we have considered is in fact a crossover.  相似文献   

19.
The structure of an electronegative plasma sheath in an oblique magnetic field is investigated with a fluid model. We assume the system consists of hot electrons and negative ions as well as cold positive ions. Densities of particles and distributions of the spacious potential in various states of magnetic field are studied. The result shows that the existence of magnetic field and negative ions has great effects on the plasma sheath structures. In addition, the effects of negative ion density and temperature on the structure of the electronegative plasma sheath are discussed.  相似文献   

20.
The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product ▽(n/) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection(annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号