首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aqueous sodium undecenoate (SUD) –dodecyltrimethylammonium bromide (DTAB) catanionic system was studied at low concentration. The system did not precipitate, even at a 1:1 SUD:DTAB proportion, but showed the formation of a coacervate in a range of surfactant mixture compositions. Micelles have a preferential composition of 0.37 mole fraction of SUD. This behavior is attributed to the presence of the double bond at the distal extreme of the SUD molecule, which can form hydrogen bonds with water. Consequently, the –CH=CH2 group is situated at the interface between the hydrocarbon micelle core and water, reducing the interfacial free energy. Structural computations demonstrate that the mentioned SUD proportion produces complete coverage of the micelle surface by the double bonds.  相似文献   

2.
The partial molar volume and hydration number of two micellised polymerisable surfactants (dodecylethylmethacrylatedimethylammonium bromide (C12PS) and hexadecylethylmethacrylatedimethylammonium bromide (C16PS)) were determined. Results support marginally the annular conformation of the polar head group (N+(CH3)2-CH2-CH2-O-CO-C(CH3)(=CH2)) proposed in the literature.  相似文献   

3.
The influence of adding alkyldimethylamine oxide (CnDMAO) with varying alkyl chain lengths (nc) on the acid soap formation of oleic acid was investigated. The solutions of equimolar mixtures of CnDMAO and sodium oleate (Na+Ol), each 25 mmol kg–1, became turbid at a certain critical pH (pHc) on decreasing pH. Values of the pHc depended on nc and showed the minimum at C10DMAO/NaOl mixture. The presence of the minimum was interpreted in terms of two different kinds of the complex formed in the micelles depending on nc: the catanionic complex (CnDMAOH+/Ol) in the mixed micelles of nc=16, 14, 12 and 10, and the acid soap of oleic acid for C6DMAO/NaOl and C8DMAO/NaOl mixtures. At pHc where the amounts of these complexes of double-chain nature reached certain critical values in the mixed micelles, a phase separation (most probably lamella formation) took place. It was expected that the critical amount of the catanionic complex was smaller for the mixtures of higher nc values and hence pHc increased with nc for the mixtures nc10. For the mixtures of nc<10, it was expected that the amount of the acid soap in the mixed micelles increased with decreasing nc at a given pH and the pHc increased with decreasing nc. Micelle compositions at cmc were evaluated on the basis of the regular solution theory coupled with the pseudo phase approximation. The micelle compositions at 100 mmol kg–1 were examined with 13C-NMR. The results showed the mixed micelle formation for nc=16–10, while the micelles mostly consisting of oleic acid for the mixtures of nc=8 and 6. The assumption of two different complexes for the two groups of the mixture was thus supported. The cmc range of mixed micelles was evaluated and it was well correlated with the observed concentration range of pyrene fluorescence change.  相似文献   

4.
The phase equilibria of surfactant aqueous mixtures, hexadecyltrimethylammonium bromide and sodium dodecyl sulfate, have been studied by polarizing microscopy, quasielastic light scattering, conductivity, potentiometric, electrophoretic, and surface tension measurements. Adsorption at the air/solution interface, association and precipitation in bulk solution strongly depended on the molar ratio and the concentration of surfactants. Catanionic vesicles coexisted with crystalline catanionic salts in a broad concentration range. The relative proportions of crystallites and vesicles varied according to the concentration and the molar ratio of the surfactants. The solid crystalline phase was progressively converted to catanionic vesicles with increasing surfactant molar ratio. At the highest excess of one of the surfactants transition from catanionic vesicles to mixed micelles occurred. The formation and stability of different phases are discussed in terms of surfactant molecular packing constraints and electrostatic interactions in the headgroup region. Surfactant tail-length asymmetry and the change of electrostatic interactions in the headgroup region from attractive to repulsive are governing factors for the transition from planar to curved bilayers. Received: 9 June 1998 Accepted: 18 August 1998  相似文献   

5.
6.
Enthalpies of dilution of aqueous sodium chloride from 3.0 to about 0.01 mol-kg–1 have been measured from 349.2 to 498.2 K near the saturation pressure of water using a flow calorimeter. Enthalpies of dilution of aqueous dodecyltrimethylammonium bromide have been measured from 0.3 to about 0.005 mol-kg–1 and from 323.4 to 498.3 K, also near the saturation pressure of water.  相似文献   

7.
The interfacial and aggregation behavior of the nonionic surfactant decanoyl-N-methyl-glucamide (Mega-10) with the cationic surfactant hexadecyltriphenylphosphonium bromide (HTPB) have been studied using interfacial tension measurements and fluorescence techniques. From interfacial tension measurements, the critical micellar concentrations (cmc) and various interfacial thermodynamic parameters have been evaluated. The experimental results were analyzed in the context of the pseudophase separation model, the regular solution theory, and the Maeda’s approach. These approaches allowed us to determine the interaction parameter and composition in the mixed state. By using the static quenching method, the mean micellar aggregation numbers of pure and mixed micelles of HTPB+Mega-10 were obtained. It was found that that the aggregation number decreases with increasing mole fraction of HTPB. This behavior is attributed to the presence of the bulky head group of HTPB, which creates steric head group incompatibility and/or electrostatic repulsion. The micropolarity of the micelle was monitored with pyrene fluorescence intensity ratio. It was observed that the increasing participation of HTPB induces the formation of micelles with a hydrated structure. The polarization of the fluorescent probe Rhodamine B was monitored in micellar medium and found to increase with the increase of ionic content. This behavior suggests the formation of mixed micelles with a more ordered or rigid structure.  相似文献   

8.
A new aqueous two-phase system is developed consisting of sodium perfluorooctanoate (SPFO) and dodecyltriethylammonium bromide (C12NE) cationic–anionic surfactant mixture. The two phases with a clear interfacial boundary formed when SPFO to C12NE molar ratio is 1.2:1 in the presence of 5% (v/v) nitric acid. The top phase is transparent and the bottom phase is opalescent. Extractions of dyes, porphyrin compounds with the two-phase system were performed. The results show that hydrophobic molecules were extracted into the surfactant-rich bottom phase with high extraction efficiencies. Positively charged porphyrins were extracted into the bottom phase with higher extraction efficiencies than negatively charged porphyrins. Such a new anionic surfactant two-phase system would be complementary to the C12NE–SDS (sodium dodecyl sulfate) cationic two-phase which has been proven to be effective for extractions of porphyrins with substituted groups like carboxyl or sulfonic acid groups.  相似文献   

9.
10.
Densities, ρ, and speed of sound, u, of the solutions of LiBr with non-aqueous solvents (methanol, ethanol, 2-propanol, acetone, and acetonitrile) having a wide range of dielectric constants were measured at T = 298.15 K. Also, these measurements were made for the system (LiBr + N,N-dimethylacetamide) at T = 323.15 K. For the investigated systems, the limiting values for apparent molar volume, , and the apparent molar isentropic compressibility, , were obtained from the Redlich-Mayer and an abbreviated form of the Pitzer equations. The Pitzer and NRTL equations were satisfactorily used for the correlation of apparent molar volumes, V?, and the apparent molar isentropic compressibility, κ?, values of the studied systems.  相似文献   

11.
Sodium 10-undecenyl sulfate (SUS), sodium 10-undecenyl leucinate (SUL) and their five different mixed micelles at varied percent mole ratios were prepared. The critical micelle concentration (CMC), C20, γCMC, partial specific volume, methylene group selectivity, mobilities and elution window were determined using a variety of analytical techniques. These surfactant systems were then evaluated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC). As a commonly used pseudostationary phase in MEKC, sodium dodecyl sulfate (SDS) was also evaluated. The CMC values of SUS and SUL were found to be 26 and 16 mM, respectively, whereas the CMC of mixed surfactants was found to be very similar to that of SUL. The C20 values decreased dramatically as the concentration of SUL is increased in the mixed micelle. An increase in SUL content gradually increased the methylene group selectivity making the binary mixed surfactants more hydrophobic. Linear solvation energy relationships (LSERs) and free energy of transfer studies were also applied to predict the selectivity differences between the surfactant systems. The cohesiveness and the hydrogen bond acidic character of the surfactant systems were found to have the most significant influence on selectivity and MEKC retention. The SUS and SDS showed the strongest while SUL showed the weakest hydrogen bond donating capacity. The basicity, interaction with n and π-electrons of the solute and dipolarity/polarizability were the least significant factors in LSER model for the surfactant systems studied. Free energies of transfer of selected functional groups in each surfactant systems were also calculated and found to be in good agreement with the LSER data.  相似文献   

12.
Excess molar volumes and partial molar volumes were determined for dilute aqueous solutions of 1-propanol, 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol, at temperatures of (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K from density measurements. The infinite dilution partial molar volumes of alcohols in aqueous solution were obtained by extrapolation at each temperature. The volumetric behavior of aqueous alcohol and polyol solutions is discussed in terms of the relationship between polar and non-polar groups and its effect on water structure.  相似文献   

13.
The densities of 1-butanol and 1-pentanol were measured in aqueous solutions of dodecyltrimethylammonium bromide and dodecyldimethylamine oxide and the partial molar volumes at infinite dilution of the alcohols in aqueous surfactants solutions were obtained. The observed trends of this quantity as a function of the surfactant concentration were rationalized using a mass-action model for the alcohol distribution between the aqueous and the micellar phase. At the same time, the model was revised to account for the alcohol effect on the surfactant micellization equilibrium. The partial molar volume of alcohols in the aqueous and in the micellar phases and the ratios between the binding constant and the aggregation number were calculated. These thermodynamic quantities are nearly the same in the two surfactants analyzed in this paper but differ appreciably from those in sodium dodecylsulfate. The apparent molar volume of surfactants in some hydroalcoholic solutions at fixed alcohol concentration were also calculated. In the micellization region the trend of this quantity as a function of the surfactant concentration shows a hump, which depends on the alcohol concentration and on the alcohol alkyl chain length. The alcohol extraction from the aqueous to the micellar phase due to the addition of the surfactant can account for the observed trends.  相似文献   

14.
Density and sound speed measurements have been carried out for the ternary systems consisting of tetra-n-butyl ammonium bromide (TBAB) in 0.1 m aqueous magnesium sulphate heptahydrate (MgSO4.7H2O)-water over the full range of composition from T = 293.15 to 318.15 K by using volumetric method. Using this experimental data, various physical and thermodynamical parameters such as adiabatic compressibility, apparent molal compressibility, apparent molal volume, apparent and limiting partial molar volumes of the electrolytes and ions in these mixtures have been evaluated and split into respective ionic contributions. The results have been discussed in terms of ion–ion and ion–solvent interactions occurring between TBAB and aqueous MgSO4 solutions. Further, structure making/breaking behaviour of MgSO4 has been reported in terms of sign of the partial molar expansibility at infinite dilution.  相似文献   

15.
In this communication, we report experimental density data for the binary mixtures of (water + tetrahydrofuran) and (water + tetra-n-butyl ammonium bromide) at atmospheric pressure and various temperatures. The densities were measured using an Anton Paar™ digital vibrating-tube densimeter. For the (tetrahydrofuran + water) system, excess molar volumes have been calculated using the experimental densities and correlated using the Redlich–Kister equation. The Redlich–Kister equation parameters have been adjusted on experimental results. The partial molar volumes and partial excess molar volumes at infinite dilution have also been calculated for each component. A simple density equation was finally applied to correlate the measured density of the (tetra-n-butyl ammonium bromide + water) system.  相似文献   

16.
The Bjerrum association model has been extended to partial and apparent molar volumes. It was tested for electrolytes in water and in acetonitrile using literature or new (n-propylammonium bromide) data to cover systems having association constants between 0 and 105. The association constants and apparent distances of closest approach were obtained from conductivities. The volumes at low concentration can be fitted quantitatively to obtain by extrapolation the standard infinite dilution partial molar volume. Deviations at higher concentrations can be accounted for with a second virial coefficient.  相似文献   

17.
A Picker flow microcalorimeter and a flow densimeter were used to obtain apparent molar heat capacities and apparent molar volumes of aqueous solutions of Na3PO4 and mixtures of Na2HPO4 and NaH2PO4. Identical measurements were also made on solutions of tetramethylammonium salts to evaluate the importance of anion-cation interaction. The experimental apparent molar properties were analyzed in terms of a simple extended Debye-Hückel model and the Pitzer ion-interaction model, both with a suitable treatment for the effect of chemical relaxation on heat capacities, to derive the partial molar properties of H2PO 4 (aq), HPO 4 2– (aq) and PO 4 3– (aq) at infinite dilution. The volume and heat capacity changes for the second and third ionization of H3PO4(aq) have been determined from the experimental data. The importance of ionic complexation with sodium is discussed.  相似文献   

18.
Mixed micelles can be formed in water between various pairs of hydrophobic solutes such as surfactants, alcohols and hydrocarbons. These systems can often be studied through the thermodynamic functions of transfer of one of the solutes, usually kept near infinite dilution, from water to an aqueous solution of the other solute. When mixed micelles are formed, these functions change significantly, and often go through extrema, in the region where the binary system micellizes or undergoes some microphase transition.Three main effects are responsible for the observed trends: pair-wise interactions between both solutes in the monomeric form, a distribution of the reference solute between the aqueous and micellar phases and a shift in the monomer-micelle equilibrium in the vicinity of the reference solute. Simple equations can be derived for these three effects which can account for the sign and magnitude of the observed trends using parameters which are derived for the most part from the two binary systems.  相似文献   

19.
Densities and ultrasonic velocities of binary aqueous systems of sodium decanoate (C10Na), of a medium chain length alkoxyethanol with varying number of ethylene oxide groups (C4EO0-3), and of ternary systems of these compounds have been measured as a function of surfactant and alcohol concentrations at 25°C. The derived apparent molar volume and molar adiabatic compressibility properties of C10Na in water were fitted with a mass-action model to obtain the thermodynamic micellization parameters of C10Na. The infinite dilution transfer molar volume and transfer molar adiabatic compressibility properties of C4EO0-3 from water to aqueous C10Na solutions were obtained from the corresponding apparent molar properties using a chemical equilibrium model. The results of simulating the experimental transfer function data of these alcohols at a given low concentration of 0.05mA show that the solubilization of C4EO0-3 compounds in C10Na micelles is enhanced by increasing the number of ethylene oxide groups (EO) in the alcohol. The mean aggregation number of C10Na, which is 34 in the absence of alcohol, remains unchanged in the presence of 0.05mA while the average number of alcohol molecules per micelle increases steadily as a function of the number of EO groups in the alcohol.  相似文献   

20.
Mixed micellization of amphiphilic aminomethylated calix[4]resorcinarenes and phenols, which are their structural units, with the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous 10—70 vol % DMF decreases the critical micelle concentration; the resulting aggregates are larger than those in the CTAB—DMF—water systems. The micellization of CTAB with aminomethylated calix[4]resorcinarenes proceeds in two steps, while its micellization with phenols is a single-step process. The micellization characteristics depend on the structure and hydrophobicity of the amphiphilic compound and the concentration of DMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号