首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为设计一种利用廉价催化剂以达成C—H活化构建C—S的方法,本文研究了铜催化C—H活化/C—S偶联反应合成系列环烷基芳基硫醚化合物。以芳基磺酰肼与环烷烃为原料,溴化亚铜为催化剂,二叔丁基过氧化物(DTBP)为氧化剂,120℃反应24 h,经氧化脱氮C—H活化/C—S偶联串联反应过程,合成了系列环烷基芳基硫醚化合物。该反应适合环戊烷、环己烷、环庚烷、环辛烷和环十二烷等环烷烃和不同取代基团(甲氧基、硝基、氯和甲基)的芳基酰肼,合成得到了18个芳基硫醚类化合物,产率为41%~72%。其结构经1H NMR、13C NMR和HR-MS进行了表征。  相似文献   

2.
近年来,可见光促进的光化学有机转化引起了广大有机化学家的兴趣.相比于传统方法,利用可见光作为可再生能源的光氧化还原催化已被证明是一种温和而强大的工具,可以通过单电子转移(SET)过程促进有机分子的活化.在许多天然产物的结构中存在大量的氨基功能团,同时氨基也是一些药物分子和功能材料的重要结构单元.因此,通过对这些物质分子中的C—N键进行活化而进行C—C键形成的偶联反应,则可以对该类化合物进行有效的结构修饰,从而得到具有多种结构及功能化的化合物.因此,这方面的研究现已成为了有机合成的一个重要研究领域.综述了近年来通过可见光促进C—N键断裂及其在C—C键形成反应研究中的应用研究成果,讨论了代表性的例子及其反应机制.  相似文献   

3.
Hiyama偶联反应已经发展成为一种构筑C—C键的常用方法,尤其是在芳基-芳基和芳基-烯基偶联反应领域.Hiyama偶联反应通常需要使用R—SiF3、R—Si(OMe)3等活性高但稳定性差的有机硅试剂,发展基于稳定硅烷的Hiyama偶联反应是该领域重要的研究方向.报道了一类钯催化芳基乙烯基硅烷和芳基卤代物的交叉偶联反应,利用芳基乙烯基硅烷实现芳基化反应.反应具有较好的官能团兼容性,为制备二芳基类化合物提供了一种简便高效的途径.  相似文献   

4.
C—N,C—O键偶联是有机合成中的一类重要反应,铜催化的偶联反应是该类化学键形成中的主要手段之一,相比钯等过渡金属,金属铜具有低毒、廉价、反应条件温和等优点.按照所形成化合物的结构类型综述了铜催化C—N,C—O键偶联反应的最新研究进展.  相似文献   

5.
以酰胺-噁唑啉为辅助基团,在廉价的醋酸铜促进下,实现了酰胺衍生物C(sp2)—H键与芳基硫醇S—H键的脱氢偶联反应;以中等到优秀的产率(最高可达90%)简单高效地合成了一系列双硫化的酰胺衍生物.值得一提的是,底物范围并不局限于各种取代苯基酰胺化合物,吡啶基酰胺化合物也可以兼容.该反应的特点是:金属廉价、底物范围广、反应条件温和、无需外加配体、空气作为氧化剂、区域选择性好(仅酰胺基团邻位的C—H键发生反应,而噁唑啉基团邻位的C—H键不发生反应);此外,克级规模的反应表明了其在合成中的实用性.  相似文献   

6.
利用水热反应模拟原始地球的水热环境,以甘油和磷酸二氢铵为原料,采用非生物手段合成了sn-甘油-1(3)-磷酸和甘油-2-磷酸2种磷酸酯类物质.通过此反应,无机磷进入生物分子形成了在生物体中起重要作用C—O—P键.研究了反应温度、反应时间及矿物催化剂对反应的影响.在蒙脱土的催化下,C—O—P键的产率最大可达到1.15%(摩尔分数).  相似文献   

7.
通过硝化反应构建C—N键是有机合成的一种重要策略.近年来,利用亚硝酸叔丁酯作为硝化试剂来合成含氮化合物引起化学家们的广泛关注,并取得了诸多的研究进展.该方法反应条件温和,反应区域选择性好,为C—N键构建提供了一种绿色、高效的途径.按反应底物类型的不同,对近年来亚硝酸叔丁酯参与C—N键构建的研究进展进行了综述.  相似文献   

8.
微波诱导甲烷在活性炭/碳化硅上直接转化制C2烃   总被引:18,自引:0,他引:18  
 在高功率脉冲微波辐照下甲烷可在常压条件下在活性炭/碳化硅和活性炭碳化硅等 三种催化剂上直接转化为C2烃。研究结果表明,当使用合适的微波作用条件时,微波加热与微波 等离子协同作用可使甲烷在多孔碳化硅担载的活性炭催化剂上以很高的转化率和选择性直接转化为乙炔,除单独的微波加热诱导作用和微波等离子催化作用外,转移反应机制可能是微波加热与微波等离子交互作用的具体表现形式,对促进甲烷向乙炔直接转化起了重要作用。  相似文献   

9.
亲电试剂的还原偶联反应避免了有机金属试剂的制备与使用,对各类官能团拥有极好的兼容性,为C—C键的构筑提供了一类重要的方法.近些年来,该反应的研究取得了突破性进展,实现了一系列C(sp2)—X与C(sp3)—X亲电试剂参与的交叉偶联反应.主要针对镍催化亲电试剂交叉偶联反应构筑C(sp2)—C(sp2)和C(sp2)—C(sp3)键的研究展开综述,详细介绍了各种偶联反应及其反应机制.  相似文献   

10.
C—N键广泛存在于药物分子、天然产物及功能材料中,开发简洁高效的C—N键构建方法具有重要意义.近年来,无过渡金属体系下C(sp^2)—H键的自由基反应构建C—N键取得了诸多进展.该方法反应条件相对温和,反应活性较高,为C—N键构建提供了一条新途径.根据氮源类型的不同,对近年来C(sp^2)—H键的自由基反应构建C—N键的研究进展进行简要论述.  相似文献   

11.
张茜  吕允贺  李燕  熊涛  张前 《化学学报》2014,(11):1139-1143
报道了N-芳基脒类化合物苄位sp3 C—H键的分子内直接胺化反应,以42%~82%的收率成功合成了一系列多取代的喹唑啉衍生物,并初步研究了该反应的机理.  相似文献   

12.
过渡金属催化C—C键活化是有机化学一个热点和难点领域,吸引着人们广泛的关注.C—C键活化可以为很多复杂分子的合成提供简单、快速和原子经济性的方法.相比于钯、铑和铱等过渡金属催化剂,镍催化剂有很多优点,更加经济适用,也表现出独特的催化活性,备受化学家们的青睐.主要介绍了近些年镍催化C—C键断裂反应的研究进展.  相似文献   

13.
5种烯丙基芳醚衍生物在无溶剂、无催化剂的条件下进行Claisen重排反应,采用了微波加热和常规加热方式,比较了同等温度下微波加热和常规加热反应速率的差异.结果表明微波加热可以显著提高烯丙基苯醚Claisen重排反应的速率.反应温度为190℃时,微波加热下反应速率可提高5~10倍.微波加热是一种无催化剂、高产率的Claisen重排反应的方法.  相似文献   

14.
金属钌及其配合物具有氧化、还原等多种催化作用,同时在C—H活化等领域也有广泛的应用,是一种经济高效的催化剂.因此,该催化剂在有机合成中受到了广泛的关注.从基于钌催化醇类化合物脱氢的偶联反应机理的角度对近十年来该催化剂参与醇类化合物的C—N、C—C偶联反应进行了分类和综述,通过从反应机理角度的综述,希望设计出具有创新性的基于钌催化醇类化合物脱氢的C—N、C—C偶联反应.  相似文献   

15.
吡啶-N-氧化物直接C—C键交叉偶联反应已成为一种功能化吡啶的重要手段,综述了吡啶-N-氧化物的C—C键交叉偶联反应的最新研究进展.  相似文献   

16.
研究了微波条件下[RhCp *Cl2]2(Cp *: 五甲基环戊二烯基)催化二芳基膦酰胺与炔烃的C—H活化/环化反应, 以中等到较好的收率获得了一系列具有环状结构的含氟膦酰胺衍生物. 通过考察溶剂、 温度、 时间以及碱等因素, 筛选了最佳反应条件. 对该催化体系进行放大量实验, 也获得了良好的结果. 在实验基础上, 推测了可能的反应机理, 并将此方法应用于一种新型含氟代环状膦酰胺二胺单体的制备.  相似文献   

17.
以二苯二硫醚为硫源,在无强碱和配体的条件下,通过碘化亚铜催化促进S—S键断裂,再与苯并五元杂环化合物反应生成了芳基硫醚,采用1H NMR和13C NMR对目标化合物进行了表征,并确定了最佳反应条件.在苯并五元杂环化合物和二苯二硫醚的物质的量比为2∶1,催化剂Cu I用量为10 mol%,溶剂为二甲基亚砜(DMSO),反应温度110℃,时间12 h时,产率达到89.9%.同时,通过高效液相色谱(HLPC)进行跟踪监测,对该反应的机理进行了探讨.  相似文献   

18.
近几十年来,钯催化C—H键的选择性官能团化反应已成为有机合成中构建C—C键的重要策略,基本可以分为三类反应模式:C—H键与芳基或烷基卤化物(或拟卤化物)的交叉偶联反应、C—H键之间的交叉脱氢偶联反应、C—H键与金属有机化合物的交叉偶联反应。本文综述了该领域的最新研究进展,介绍了各类反应的特点、优势及在合成中的应用,提出了今后研究和发展的重点及方向。  相似文献   

19.
过渡金属催化的C—H键官能团化是直接构建C—C或C—X键的一个高效的方法,但这类反应大多需要外加当量或过量的氧化剂来完成催化循环.使用氧化型导向基,也就是在导向基中引入某些特殊的基团充当内氧化剂,可以避免外加氧化剂,简化反应体系,提高反应效率.近年氧化型导向基结构日趋丰富,参与的反应类型也呈现出多样化.利用氧化型导向基策略可以在无外加氧化剂条件下合成各种杂环或官能团化产物.  相似文献   

20.
C—N键构筑是有机合成的基础,对于药物分子、天然产物地合成和多功能材料地开发等具有重要作用,因此受到了广泛关注.近年来,利用四丁基碘化铵/过氧化叔丁醇的无过渡金属催化体系来构筑C—N键取得了诸多进展.该策略反应条件相对温和,反应选择性好,为C—N键构筑提供了一条经济、高效的途径.根据氮源类型的不同,对近年来四丁基碘化铵/过氧化叔丁醇促进的C—N键构筑的研究进展展开论述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号