首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloud point extraction (CPE) was applied as a preconcentration step for HPLC speciation of chromium in aqueous solutions. Simultaneous preconcentration of Cr(III) and Cr(VI) in aqueous solutions was achieved by CPE with diethyldithiocarbamate (DDTC) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the DDTC chelates of Cr(III) and Cr(VI) was realized on a RP-C18 column with the use of a mixture of methanol-water-acetonitrile (65:21:14, v/v) buffered with 0.05 M NaAc-HAc solution (pH 3.6) as the mobile phase at a flow rate of 1.0 ml min(-1). The precision (R.S.D.) for eight replicate injections of a mixture of 100 microg l(-1) of Cr(III) and Cr(VI) were 0.6 and 0.5% for the retention time, 4.1 and 4.6% for the peak area measurement, respectively. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for HPLC separation and in the initial solution, was 65 for Cr(III) and 19 for Cr(VI). The linear concentration range was from 50 to 1000 microg l(-1) for Cr(III) and 50-2000 microg l(-1) for Cr(VI). The detection limits of Cr(III) and Cr(VI) were 3.4 and 5.2 microg l(-1), respectively. The developed method was applied to the speciation of Cr(III) and Cr(VI) in snow water, river water, seawater and wastewater samples.  相似文献   

2.
Ion interaction chromatography has been successfully used for the simultaneous determination of Cr(III) and Cr(VI) in waste water. A C-18 column which had been dynamically coated with octylamine was used for the separation of Cr(III) and Cr(VI) based on anionic interaction. Cr(III) was chelated with potassium hydrogen phthalate (KHP) before injecting into the column since the Cr(III) did not exist in an anionic form like the Cr(VI) (Cr2O72−) presented at the optimum condition. The analytes were detected at 200 nm and linear relationship between absorption with the concentration of Cr(III) or Cr(VI) was 0.1-50 mg/L. Most of the interested interferences including alkali metals, heavy metals and organic materials have no significant effect on Cr(III)-KHP complexation and Cr(VI) stability, only NH4+ and ascorbic acid yielded the serious effect on the Cr(VI) stability. The relative standard deviations calculated from both of peak area and retention time were 0.75-2.20%. The sensitivity of the method at the level concentration of sub mg/L enabled the simultaneous determination of Cr(III) and Cr(VI) contents in waste water samples without any special sample preparation step.  相似文献   

3.
On the basis of the chromogenic reaction of chromium(VI) with 1,5-diphenylcarbohydrazide (DPC) on the surface of Polysorb C-18 beads and the sequential injection renewable surface technique (SI-RST), a highly sensitive reflect spectrophotometric method for the determination of chromium(III) and chromium(VI) was proposed. Considerations of system and flow cell design, and factors that influence the determination performance were discussed. With 300 microl of sample loaded and 0.6 mg of beads trapped, the linear response range was 0.02 - 0.5 mg l(-1) Cr(VI) with a detection limit (3 sigma) of 2.4 microg l(-1) Cr(VI). The method achieves a precision of 1.3% RSD (n = 11) and a throughput of 53 samples per hour. The determination of Cr(III) was based on the same reaction for the determination of Cr(VI) after being oxidized by (NH4)2S2O8. The precision of the oxidation method was evaluated using a 0.2 mg l(-1) Cr(III) standard, yielding an RSD of 2.5% (n = 11). The average recovery of Cr(III) oxidized was tested to be 99.1%. The proposed method was used in the simultaneous determination of Cr(VI) and Cr(III) in water samples, and the error was less than 3%.  相似文献   

4.
A simple method was developed for the simultaneous determination of Cr(III) and Cr(VI) by capillary zone electrophoresis (CZE), where Cr(III) was chelated with ligands to form anionic complexes. Nitrilotriacetic acid, N-2-hydroxyethylenediaminetriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and 2,6-pyridinedicarboxylic acid (PDCA) were investigated as Cr(III) complexing ligands. Of all the ligands studied, 2,6-PDCA with Cr(III) gave the largest UV response and high selectivity for Cr(III). In addition, the condition for pre-column derivatization, including pH, concentration ratio [Cr(III)/2,6-PDCA] and the stability of Cr(III) complexes were also examined. The separation of anionic forms of Cr(III) and Cr(VI) was achieved using co-CZE with UV detection at 185 nm. The electrolyte contained 30 mM phosphate, 0.5 mM tetradecyltrimethylammonium bromide, 0.1 mM 2,6-PDCA and 15% (v/v) acetonitrile at pH 6.4. The detection limits were 2 microM for Cr(III) and 3 microM for Cr(VI) and linear plots were obtained in a concentration range of 5-200 microM. The utility of the method was demonstrated for the determination of Cr(III) and Cr(VI) in contaminated soils.  相似文献   

5.
Wen B  Shan XQ  Lian J 《Talanta》2002,56(4):681-687
A rapid and simple method has been developed for the separation of chromium (III) and Cr(VI) species in river and reservoir water. Chromium (III) can be chelated with 8-hydroxyquinoline immobilized polyacrylonitrile (PAN) fiber, whereas Cr(VI) cannot. Chelated Cr(III) can be eluted with 2 mol l(-1) HCl-0.1 mol l(-1) HNO(3). Cr(VI) in the filtrate and Cr(III) in the eluant were determined by inductively coupled plasma mass spectrometry. The effect of pH, sample flow rate, eluant type and its volume on the concentration effectiveness of Cr(III) was investigated. The recommended method has been applied for the separation and determination of Cr(III) and Cr(VI) in river and reservoir water. The results indicated that the recovery of each individual Cr species ranged from 96 to 107% and the R.S.D. were found to be <10% at the level of ng ml(-1). The effect of HNO(3) added in the sampling procedure was also evaluated.  相似文献   

6.
A method is presented for the simultaneous determination of Cr(III) and Cr(VI) in yeast using species-specific double-spike isotope dilution (SSDSID) with anion-exchange liquid chromatography (LC) separation and sector field inductively coupled plasma mass spectrometric (SF-ICP-MS) detection. Total Cr is quantitated using ID SF-ICP-MS. Samples were digested on a hot plate at 95±2 °C for 6 h in an alkaline solution of 0.5 M NaOH and 0.28 M Na2CO3 for the determination of Cr(III) and Cr(VI), whereas microwave-assisted decomposition with HNO3 and H2O2 was used for the determination of total Cr. Concentrations of 2,014±16, 1,952±103 and 76±48 mg kg−1 (one standard deviation, n=4, 3, 3), respectively were obtained for total Cr, Cr(III) and Cr(VI) in the yeast sample. Significant oxidation of Cr(III) to Cr(VI) (24.2±7.6% Cr(III) oxidized, n=3) and reduction of Cr(VI) to Cr(III) (37.6±6.5% Cr(VI) reduced, n=3 ) occurred during alkaline extraction and subsequent chromatographic separation at pH 7. Despite this significant bidirectional redox transformation, quantitative recoveries for both Cr(III) and Cr(VI) were achieved using the SSDSID method. In addition, mass balance between total Cr and the sum of Cr(III) and Cr(VI) concentrations was achieved. Method detection limits of 0.3, 2 and 30 mg kg−1 were obtained for total Cr, Cr(VI) and Cr(III), respectively, based on a 0.2-g sub-sample.  相似文献   

7.
Doğutan M  Filik H  Tor I 《Talanta》2003,59(5):1053-1060
A new melamine based polymeric sequestering resin was prepared for preconcentration and separation of hexavalent chromium from water, and its sequestering action was investigated. The water-insoluble, cross-linked sequestering resin was formed by reaction with bromosuccinic acid and cross-linking of melamine. The active sequestering group on the resin is NH-(Succinic acid) or salt thereof. The resulting chelating resin was characterized by infrared spectra. The newly prepared resin quantitatively retained Cr(VI) at pH 2.0-4.0 when the flow rate was maintained between 1 and 5 ml min−1. The retained Cr(VI) was instantaneously eluted with 25 ml of 0.1 M NaOH. The chromium species were determined by a flame atomic absorption spectrometer. The limits of detection for Cr(VI) and Cr(III) were found to be 5.3 and 4.2 μg l−1, respectively. The precision and accuracy of the proposed procedure was checked by the use synthetic and reference steel samples. The established preconcentration method was successfully applied to the determination and selective separation of Cr(VI) in electroplating industry wastewater. Total concentrations determined by the spectrophotometric method (110.3±0.6 g l−1 Cr(VI) and 1.2±0.3 g l−1 Cr(III)) are compared with those found by FAAS and the obtained results (110.4±1.8 g l−1 Cr(VI) and 1.4±0.5 g l−1 Cr(III)) show good agreement.  相似文献   

8.
Padarauskas A  Schwedt G 《Talanta》1995,42(5):693-699
A reversed phase ion pair chromatographic method for the simultaneous determination of Cr species and common anions on a C(18)-bonded stationary phase was developed by using acetonitrile-water (2:98 v/v) containing 1.0 mM tetrabutylammonium hydroxide and 0.5 mM trans-1,2-diaminecyclohexane-N,N,N',N'-tetraacetic acid (DCTA) at pH 6.5 as mobile phase and UV-detection at 210 nm. Chromatographic parameters were optimized for separation of Cr(III)-DCTA complex, chromate and other anions. The detection limits were found as 8 ng/ml for Cr(III) and 35 ng/ml for Cr(VI). Under the optimum conditions, most other ions did not interfere. The method can be applied to separate a number of common anions simultaneously with the separation of Cr(III) and Cr(VI).  相似文献   

9.
The species of Cr(III) and Cr(VI) in water samples were determined by flow injection on-line preconcentration and separation on two-microcolumn system-derivative flame atomic absorption spectrometry during a collaborative analysis for certification. The Cr(III) and Cr(VI) in water samples were retained on two microcolumns with ion exchange resin and were eluted directly to nebulizer by 15% HNO3 and 8% NH4NO3, respectively. The characteristic concentration (at the sensitivity grade of 2 mV min?1 for 1 min of preconcentration time) for Cr(III) and Cr(VI) were 0.130 and 0.0985 μg l?1, in the order which were 332- and 431-fold better than those of FAAS, and 45- and 47-fold better than those of FI-FAAS, respectively. The relative standard deviations were 3.27% and 3.66% with corresponding detection limits (3σ) of 0.244 and 0.235 μg l?1, respectively. The linear ranges of determinations for Cr(III) and Cr(VI) were 0~100 μgm l?1 with correlation coefficients of 0.9984 to 0.9996. The satisfactory recovery of 94.4%~106% for Cr(III) and Cr(VI) could be obtained from water samples.  相似文献   

10.
Kubán P  Kubán P  Kubán V 《Electrophoresis》2003,24(9):1397-1403
A sensitive, rapid and inexpensive capillary electrophoretic method for the determination of Cr(III) and Cr(VI) species is presented. The method is based on the dual opposite end injection principle and contactless conductometric detection. The sample containing cationic and anionic species is injected into the opposite ends of the separation capillary and after the high voltage is applied, the analytes migrate towards the capillary center, where the cell of a contactless conductivity detector is placed. The method does not require any sample pretreatment, except dilution with deionized water. The separation of Cr(III), Cr(VI) and other common inorganic anions and cations is achieved in less than 4 min. The parameters of the separation electrolyte solution, such as pH and concentration of L-histidine, were optimized. Best results were achieved with electrolyte solution consisting of 4.5 mM L-histidine, adjusted to pH 3.40 with acetic acid. The detection limits achieved for Cr(III) and Cr(VI) were 10 and 39 microg.L(-1), respectively. The repeatability of migration times and peak areas was better than 0.3% and 2.8%, respectively. The developed method was applied to the analyses of rinse water samples from the galvanic industry. The results for the determination of Cr(III) and Cr(VI) were in good agreement with the results obtained by certified differential spectrophotometric method using diphenylcarbazide (CN 83 0520-40) and with the results for the total chromium concentrations determined by electrothermal atomic absorbance spectrometry (ET-AAS) and inductively coupled plasma-mass spectrometry (ICP-MS).  相似文献   

11.
Triton X-100 cerium(IV) phosphate (TX-100CeP) was synthesized and characterized by using IR, X-ray, TGA/DT and the elemental analysis. The chemical stability of TX-100CeP versus the different concentrations of HCl acid was studied before and after its exposure to the radiation dose (30 K Gray). The effect of HCl concentration on separation of Cr(III) from Cr(VI) by using TX-100CeP as surface active ion exchanger was also studied. A novel method was achieved for the quantifying of Cr(III) and Cr(VI) ions by using the high-performance liquid chromatography (HPLC) at wavelength 650 nm, a stationary phase consists of reversed phase column (Nucleosil phenyl column; 250 × 4.6 mm, 5 μm), and a mobile phase consists of 0.001 M di-(2-ethylhexyl) phosphoric acid (DEHPA) in methanol:water (70:30 v/v). The retention times were 7.0 and 8.5 min, for the Cr(III) and Cr(VI), respectively. The exchange capacity of Cr(III) was quantified (2.1 meq/g) onto the TX-100CeP.  相似文献   

12.
The possibility of using moss (Funaria hygrometrica), immobilized in a polysilicate matrix as substrate for speciation of Cr(III) and Cr(VI) in various water samples has been investigated. Experiments were performed to optimize conditions such as pH, amount of sorbent and flow rate, to achieve the quantitative separation of Cr(III) and Cr(VI). During all the steps of the separation process, Cr(III) was selectively sorbed on the column of immobilized moss in the pH range of 4-8 while, Cr(VI) was found to remain in solution. The retained Cr(III) was subsequently eluted with 10 ml of 2 mol l−1 HNO3. A pre-concentration factor of about 20 was achieved for Cr(III) when, 200 ml of water was passed. The immobilized moss was packed in a home made mini-column and incorporated in flow injection system for obtaining calibration plots for both Cr(III) and Cr(VI) at low ppb levels that were compared with the plots obtained without column. After separation, the chromium (Cr) species were determined by inductively coupled plasma mass spectrometry (ICP-MS) and flame atomic absorption spectrometry (FAAS). The sorption capacity of the immobilized moss was found to be ∼11.5 mg g−1 for Cr(III). The effect of various interfering ions has also been studied. The proposed method was applied successfully for the determination of Cr(III) and Cr(VI) in spiked and real wastewater samples and recoveries were found to be >95%.  相似文献   

13.
Bağ H  Türker AR  Lale M  Tunçeli A 《Talanta》2000,51(5):895-902
A rapid, sensitive and accurate method for the separation, preconcentration and determination of Cr(III) and Cr(VI) in water samples is described. Chromium species can be separated by biosorption on Saccharomyces cerevisiae immobilized on sepiolite and determined by flame atomic absorption spectrometry (FAAS). The optimum conditions for separation and preconcentration (pH, bed height, flow rate and volume of sample solution) were evaluated. Recovery of the chromium was 96.3+/-0.2% at 95% confidence level. The breakthrough capacity of the adsorbent was found as 228 mumol g(-1) for Cr(III). The proposed method was applied successfully to the determination of Cr(III) and Cr(VI) in spiked and river water samples.  相似文献   

14.
Inorganic Cr(III) and Cr(VI) have contrasting biological, geochemical and toxicology effects. Cr(III) is considered as an essential species for the proper functioning of living organisms but Cr(VI) is toxic for the biological systems. An off-line speciation method using Chelex-100 has been practiced for speciation to Cr(III) and Cr(VI) from surface waters of rivers. The underlying principal of this separation method is based on the ability of cationic Cr(III) to be retained by the resin Chelex-100 while the anionic Cr(VI) remained in the sample matrices. The efficiency of this technique was improved by studying the effect of resin pH. Quantitative determination using inductively coupled plasma-mass spectrometry (ICP-MS) and instrumental neutron activation analysis (INAA) was carried out after the separation to determine the total Cr and Cr(VI) in the liquid matrices. The precision and the accuracy of the quantitative analysis were evaluated by using standard reference material NRCC CASS-2 Intercomparison of INAA and ICP-MS results were determined. The quantity of inorganic Cr(III) and Cr(VI) in the surface water of rivers in the vicinity of industrial areas was investigated together with the determination of the physical properties of the water rivers during sampling.  相似文献   

15.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

16.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

17.
《Analytical letters》2012,45(10):2269-2275
Abstract

A simple fluorimetric determination of Cr(VI) in the presence of Cr(III) is described. This determination is based on the fluorescence, produced from the ion-association complex between the Crystal violet cation and the anionic complex, formed between Cr(VI) and excess of I?. This fluorescence is not observed when Cr(III) is used instead of Cr(VI). The fluorescence intensity is linear over the concentration range of 0–60 μg/1. The method was applied in potable and sea waters.  相似文献   

18.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

19.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

20.
A sensitive method for the simultaneous determination of chromium(III) (Cr3+) and chromium(VI) (CrO4(2-)) using in-capillary reaction, capillary electrophoresis (CE) separation and chemiluminescence (CL) detection was developed. The chemiluminescence reaction was based on luminol oxidation by hydrogen peroxide in basic aqueous solution catalyzed by Cr3+ ion followed by capillary electrophoresis separation. Based on in-capillary reduction, chromium(VI) can be reduced by acidic sodium hydrogensulfite to form chromium(III) while the sample is running through the capillary. Before the electrophoresis procedure, the sample (Cr3+ and CrO4(2-)), buffer and acidic sodium hydrogensulfite solution segments were injected in that order into the capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ ions migrate to the cathode, while CrO4(2-) ions, moving in the opposite direction toward the anode, react with acidic sodium hydrogensulfite which results in the formation of Cr3+ ions. Because of the migration time difference of both Cr3+ ions, Cr(III) and Cr(VI) could be separated. The running buffer was composed of 0.02 mol l(-1) acetate buffer (pH 4.7) with 1 x 10(-3) mol l(-1) EDTA. Parameters affecting CE-CL separation and detection, such as reductant (sodium hydrogensulfite) concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, were optimized. The limits of detection (LODs) of Cr(III) and Cr(VI) were 6 x 10(-13) and 8 x 10(-12) mol l(-1) (S/N=3), respectively. The mass LODs for Cr(III) and Cr(VI) were 1.2 x 10(-20) mol (12 zmol) and 3.8 x 10(-19) mol (380 zmol), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号