首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to understand the role of viscoelasticity on draw resonance in the isothermal film casting process, a steady state analysis and a linear stability analysis for three-dimensional flow disturbances have been conducted. The constitutive equation used is a modified convected Maxwell model, with shear-rate dependent viscosity and fluid characteristic time. The numerical results indicate that the flow is stable below a lower critical draw ratio and above an upper critical draw ratio. Shear thinning in viscosity reduces the lower critical draw ratio and somewhat increases the upper critical draw ratio—thereby enlarging the region of instability. Slower shear reduction in fluid characteristic time dramatically decreases the upper critical draw ratio but has no significant effect on the lower critical draw ratio; therefore, fluids with higher characteristic time are more stable.  相似文献   

2.
Studies of the onset of instabilities were conducted on single hole and multi-hole contractions using laser speckle visualization. A well characterized elastic fluid was used with constant viscosity of 13.1 Pa · s and elasticity characterized by a longest relaxation time constant of 2.233 s. The onset of instabilities was characterized in terms of the Deborah number and the contraction ratio. Three types of instabilities were observed: pulsing vortices, azimuthally rotating vortices, and swirling vortices. For the single hole contractions the critical Deborah number for instability increased from 4.4 to 5.07 to 5.25 as the contraction ratio increased from 4: 1 to 8: 1 to 12: 1. The magnitude of the instabilities was much greater for the 4: 1 contraction than for the other two contraction ratios. For the multi-hole contraction a square array of nine holes was used and the ratio of the hole diameter to hole spacing was varied. The height of the vortices is very similar for the single hole and multi-hole contractions at low Deborah numbers. At high Deborah numbers the effect of adjacent holes is to reduce the height of the vortices by a factor of three. For the 4: 1 spacing no secondary vortex was observed below a Deborah number of De = 3.7. Secondary vortices occurred for the 8:1 and 10:1 spacing at all Deborah numbers. Unstable pulsing vortices appeared for all spacings at a critical Deborah number around 5.5. Adjacent holes decreased the strength of the unsteady vortex motions. The centerline velocities were measured for the multi-hole contraction at shear rates of 5, 30, and 300 s–1. The elongational strain rates are similar at a low shear rate of 5 s–1. As shear rate is increased the onset of stretching occurs closer to the plane of the contraction for the smaller contraction ratios.  相似文献   

3.
The flow past a cylinder in a channel with the aspect ratio of 2:1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-square finite element method and a p-adaptive refinement algorithm. A posteriori error estimation indicates that the stress-gradient error dominates the total error. As the Deborah number, De, approaches 0.8 for the UCM fluid and 0.9 for the Oldroyd-B fluid, strong stress boundary layers near the rear stagnation point are forming, which are characterized by jumps of the stress-profiles on the cylinder wall and plane of symmetry, huge stress gradients and rapid decay of the gradients across narrow thicknesses. The origin of the huge stress-gradients can be traced to the purely elongational flow behind the rear stagnation point, where the position at which the elongation rate is of 1/2De approaches the rear stagnation point as the Deborah number approaches the critical values. These observations imply that the cylinder problem for the UCM and Oldroyd-B fluids may have physical limiting Deborah numbers of 0.8 and 0.9, respectively.The project supported by the National Natural Science Foundation of China (50335010 and 20274041) and the MOLDFLOW Comp. Australia.  相似文献   

4.
Deformation of an Oldroyd B drop in a Newtonian matrix under steady shear is simulated using a front tracking finite difference method for varying viscosity ratio. For drop viscosity lower than that of the matrix, the long-time steady deformation behavior is similar to that of the viscosity matched system—the drop shows reduced deformation with increasing Deborah number due to the increased inhibiting viscoelastic normal stress inside the drop. However for higher viscosity ratio systems, the drop response is non-monotonic—the steady drop deformation first decreases with increasing Deborah number but above a critical Deborah number, it increases with further increase in Deborah number, reaching higher than the viscous case value for some viscosity ratios. We explain the increase in deformation with Deborah number by noting that at higher viscosity ratios, strain rate inside the drop is reduced, thereby reducing the inhibiting viscoelastic stress. Furthermore, similar to the viscosity matched system, the drop inclination angle increases with increasing Deborah number. A drop aligned more with the maximum stretching axis at 45 degree of the imposed shear, experiences increased viscous stretching. With increased ratio of polymeric viscosity to total drop viscosity, the drop deformation decreases and the inclination angle increases. Our simulation results compare favorably with a number of experimental and computational results from other researchers.  相似文献   

5.
Particle image velocimetry (PIV) and pressure loss measurements were used to investigate slow flow through a square array of cylinders having a solid fraction of 10%. The test fluids were a Newtonian fluid and a Boger fluid, both of high viscosity such that the Reynolds number did not exceed 0.1. The pressure loss data reveal that the onset of elastic effects occurred at a Deborah number around 0.5 and that flow resistance was up to several times Newtonian values at Deborah numbers up to 3. PIV showed that the transverse velocity profiles for the Newtonian and non-Newtonian fluid were the same at Deborah numbers below onset. Above onset, the profiles became skewed, increasingly so as the Deborah number increased. In the wake regions between cylinders in a column, periodic flow structures formed in the spanwise direction. The structures were staggered from column to column, consistent with the skewing and were offset. These flow patterns are the result of an apparent elastic instability.  相似文献   

6.
The flow of a polystyrene Boger fluid through axisymmetric contraction–expansions having various contraction ratios (2≤β≤8) and varying degrees of re-entrant corner curvatures are studied experimentally over a large range of Deborah numbers. The ideal elastic fluid is dilute, monodisperse and well characterized in both shear and transient uniaxial extension. A large enhanced pressure drop above that of a Newtonian fluid is observed independent of contraction ratio and re-entrant corner curvature. Streak images, laser Doppler velocimetry (LDV) and digital particle image velocimetry (DPIV) are used to investigate the flow kinematics upstream of the contraction plane. LDV is used to measure velocity fluctuation in the mean flow field and to characterize a global elastic flow instability which occurs at large Deborah numbers. For a contraction ratio of β=2, a steady elastic lip vortex is observed while for contraction ratios of 4≤β≤8, no lip vortex is observed and a corner vortex is seen. Rounding the re-entrant corner leads to shifts in the onset of the flow transitions at larger Deborah numbers, but does not qualitatively change the overall structure of the flow field. We describe a simple rescaling of the deformation rate which incorporates the effects of lip curvature and allows measurements of vortex size, enhanced pressure drop and critical Deborah number for the onset of elastic instability to be collapsed onto master curves. Transient extensional rheology measurements are utilized to explain the significant differences in vortex growth pathways (i.e. elastic corner vortex versus lip vortex growth) observed between the polystyrene Boger fluids used in this research and polyisobutylene and polyacrylamide Boger fluids used in previous contraction flow experiments. We show that the role of contraction ratio on vortex growth dynamics can be rationalized by considering the dimensionless ratio of the elastic normal stress difference in steady shear flow to those in transient uniaxial extension. It appears that the differences in this normal stress ratio for different fluids at a given Deborah number arise from variations in solvent quality or excluded volume effects.  相似文献   

7.
The rheology of a system must be explored not only in viscometric flows, but also in other flow classes, and so, we present some results for the axisymmetric elongational flow of non-colloidal suspensions of spheres. We compare our results with data from shear flows using the same matrices and spheres. We have experimented with non-colloidal suspensions of 40-μm diameter polystyrene spheres with volume fractions (?) varying from 0.3 to 0.5. Two matrix fluids were used—one was a near-Newtonian polydimethyl siloxane of 12 Pa-s viscosity and the other was a variant of the M1 Boger fluid sample of Sridhar which we call M1*. We did not find that the Trouton ratio for either of these fluids was 3; generally, the ratio was larger. We investigated the role of sphere roughness using spheres roughened to 5.3 % of the radius in a 50 % suspension in silicone oil and found an increase of elongational viscosity of about 65 % which is comparable with the 60 % increase in shear viscosity with roughness noted previously. For the silicone oil matrix, we found no rate effect, with very little strain-hardening. By contrast, the M1-type matrix suspensions showed strain-hardening and an increase of elongational viscosity with elongation rate.  相似文献   

8.
Droplets splashing upon films of the same fluid of various depths   总被引:1,自引:0,他引:1  
We explore the effects of fluid films of variable depths on droplets impacting into them. Corresponding to a range of fluid “film” depths, a non-dimensional parameter—H*, defined as the ratio of the film thickness to the droplet diameter—is varied in the range 0.1≤H*≤10. In general, the effect of the fluid film imposes a dramatic difference on the dynamics of the droplet–surface interaction when compared to a similar impact on a dry surface. This is illustrated by the size distribution and number of the splash products. While thin fluid films (H*≈0.1) promote splashing, thicker films (1≤H*≤10) act to inhibit it. The relative roles of surface tension and viscosity are investigated by comparison of a matrix of fluids with low and high values of these properties. Impingement conditions, as characterized by Reynolds and Weber numbers, are varied by velocity over a range from 1.34 to 4.22 m/s, maintaining a constant droplet diameter of 2.0 mm. The dependence of splashing dynamics, characterized by splash product size and number, on the fluid surface tension and viscosity and film thickness are discussed.  相似文献   

9.
A flat, compressed elastic film on a viscous layer is unstable. The film can form wrinkles to reduce the elastic energy. A linear perturbation analysis is performed to determine the critical wave number and the growth rate of the unstable modes. While the viscous layer has no effect on the critical wave number, its viscosity and thickness set the time scale for the growth of the perturbations. The fastest growing wave number and the corresponding growth rate are obtained as functions of the compressive strain and the thickness ratio between the viscous layer and the elastic film. The present analysis is valid for all thickness range of the viscous layer. In the limits of infinitely thick and thin viscous layers, the results reduce to those obtained in the previous studies.  相似文献   

10.
B. Gampert  P. Wagner 《Rheologica Acta》1982,21(4-5):578-581
The polymeric material investigated consisted of laboratory synthesized polyacrylamide molecular weight fractions of relatively low dispersity. Drag reduction measurements were performed in a single pass pipe flow system. A Deborah numberDe and an expression for the drag reductionWV * were derived from the hypothesis that the Toms effect results from an increase in the elongational viscosity which reduces the number and the intensity of bursting periods. Figures presentingWV * as a function ofDe are shown.  相似文献   

11.
Extrusion film casting (EFC) is an industrially important process which produces thousands of tons of polymer films, sheets, and coating used for various industrial as well as household applications. In this paper, we focus on an instability which occurs during certain polymer processing operations operating under predominantly elongational flow, such as extrusion film casting and fiber spinning. This instability, called the draw resonance, occurs in the form of sustained periodic fluctuations in the film dimensions. It appears when the process goes beyond the critical line speed of the EFC process. In this work, a conventional linear stability analysis is carried out for nonisothermal EFC process to determine the onset of the draw resonance. The polymer rheology is modeled by the Phan-Thien Tanner (PTT) multi-mode constitutive equation. For the implementation, a conventional shooting method approach is used. Extrusion film casting experiments were also carried out using a conventional linear low-density polyethylene (LLDPE) by varying process parameters such as draw ratio and aspect ratio, to observe the effect on the stability of the process. Linear stability analysis results under non-isothermal conditions are compared and validated with existing results from literature and with our own experimental data. This work displays the effect of multiple relaxation modes as well as the temperature influence on the stability of EFC process. Finally, results also indicate that the temperature highly affects the stability of the EFC process and cannot be ignored from modeling of EFC process.  相似文献   

12.
The problem of the squeeze film flow of a viscoelastic fluid between parallel, circular disks is analyzed. The upper disk is subject to small, axial oscillations. Lodge's “rubber-like liquid” is used as the viscoelastic fluid model, and fluid inertia forces are included. An exact solution to the equations of motion is obtained involving in-phase and out-of-phase components of velocity field and load, with respect to the plate velocity. Peculiar resonance phenomena in the load amplitude are exhibited at high Deborah number. At certain combinations of Reynolds number and Deborah number, the in-phase and/or out-of-phase velocity field components may attain an unusual circulating type of motion in which the flow reverses direction across the film. In the low Deborah number limit, and in the low Reynolds number limit, the results of this study reduce to those obtained by other workers.  相似文献   

13.
The boundary layer flow of a viscoelastic fluid of the second-grade type over a rigid continuous plate moving through an otherwise quiescent fluid with constant velocity U is studied. Assuming the flow to be laminar and two-dimensional, local similarity solution is found with fluid's elasticity and plate's withdrawal speed as the main variables. Results are presented for velocity profiles, boundary layer thickness, wall skin friction coefficient and fluid entrainment in terms of the local Deborah number. A marked formation of boundary layer is predicted, even at low Reynolds numbers, provided the Deborah number is sufficiently large. The boundary layer thickness and the wall skin friction coefficient are found to scale with fluid's elasticity—both decreasing the higher the fluid's elasticity. The amount of fluid entrained is also predicted to decrease whenever a fluid exhibits elastic behavior.  相似文献   

14.
The motion of two immiscible liquids in a plane channel is analyzed for the case in which the flow conditions and the interactions between the liquids and the solid surface maintain the displaced fluid attached to the wall. The Galerkin Finite Element Method is used to compute the velocity field and the configuration of the interface between the two fluids. We compare the residual mass fraction left on the wall with its two counterparts in capillary tubes, namely residual mass fraction and dimensionless layer thickness of the displaced fluid. The main result of this comparison was that although there is a qualitative similarity concerning the layer thickness between the two cases, the residual fraction of mass presented an important difference, showing that when the aspect ratio of the capillary passage is large there is an increase in the displacement efficiency. The thickness of the displaced liquid film attached to the channel walls is a function of the capillary number (Ca) and the viscosity ratio (Nμ). A map of streamlines in the Cartesian space (CaNμ) with the different flow regimes of the problem is presented. We also showed that we can adapt the available analytical results obtained for gas-displacement in capillary tubes to the plane channel case, for low values of Ca.  相似文献   

15.
We present analyses to provide a generalized rheological equation for suspensions and emulsions of non-Brownian particles. These multiparticle systems are subjected to a steady straining flow at low Reynolds number. We first consider the effect of a single deformable fluid particle on the ambient velocity and stress fields to constrain the rheological behavior of dilute mixtures. In the homogenization process, we introduce a first volume correction by considering a finite domain for the incompressible matrix. We then extend the solution for the rheology of concentrated system using an incremental differential method operating in a fixed and finite volume, where we account for the effective volume of particles through a crowding factor. This approach provides a self-consistent method to approximate hydrodynamic interactions between bubbles, droplets, or solid particles in concentrated systems. The resultant non-linear model predicts the relative viscosity over particle volume fractions ranging from dilute to the the random close packing in the limit of small deformation (capillary or Weissenberg numbers) for any viscosity ratio between the dispersed and continuous phases. The predictions from our model are tested against published datasets and other constitutive equations over different ranges of viscosity ratio, volume fraction, and shear rate. These comparisons show that our model, is in excellent agreement with published datasets. Moreover, comparisons with experimental data show that the model performs very well when extrapolated to high capillary numbers (C a?1). We also predict the existence of two dimensionless numbers; a critical viscosity ratio and critical capillary numbers that characterize transitions in the macroscopic rheological behavior of emulsions. Finally, we present a regime diagram in terms of the viscosity ratio and capillary number that constrains conditions where emulsions behave like Newtonian or Non-Newtonian fluids.  相似文献   

16.
The unsteady extrusion of a viscoelastic film from an annular and axisymmetric die is examined. External, elastic, viscous and inertia forces deform the film, which is simultaneously cooled via forced convection to the ambient air. This moving boundary problem is solved by mapping the liquid/air interfaces onto fixed ones and by employing a regular perturbation expansion for all the dependent variables. The ratio of the film thickness to its inner radius at the exit of the die is used as the small parameter in the perturbation expansion. The fluid mechanical aspects of the process depend on the Stokes, Deborah, Reynolds, and Capillary numbers. The heat transfer in the film and to the environment gives rise to four additional dimensionless groups: the Peclet, Biot and Brinkman numbers and the activation energy, which determines the temperature dependence of fluid viscosity and elasticity. A variable heat transfer coefficient is also considered. For typical fluid properties and process conditions, the Peclet number is very large. In this case it is the ratio of the Biot to the Peclet number, the Stanton number, which arises in the energy conservation equation. It is shown that film cooling becomes important when the Stanton number and/or the activation energy are in the high-end of their typical values. In such cases, the cooling of the parison leads to a more uniform flow and shape for the film. The influence on the process of a variable heat transfer coefficient and the Brinkman number is small. Received: 7 April 1999/Accepted: 10 August 1999  相似文献   

17.
The governing rheological property for extrusion drawing in film-casting process is proposed in this study. The experiment of film-casting process using the high-pressure process low-density polyethylene (LDPE) was performed. The non-isothermal viscoelastic simulation of the film casting experiment was also carried out to explain the experimental results. Film width reduction phenomenon in an air gap, so-called neck-in behavior, was investigated by using the simulation of the LDPE and the model fluids exhibiting specific viscoelasticity. The neck-in phenomenon was also examined using theoretical model based on force balance and deformation type of a film. As a result, the neck-in normalized by the air gap was in good correlation with the ratio of planar to uniaxial elongational viscosity rather than the strain hardening nature of uniaxial elongational viscosity.  相似文献   

18.
Several linear (LLDPE, HDPE, PS) and long-chain-branched (LDPE, PP) polymer melts were investigated by an elongational rheometer (RME Rheometrics) and by Rheotens (Göttfert). The Molecular Stress Function (MSF) theory is briefly reviewed and used to extrapolate the steady-state elongational viscosity. To evaluate Rheotens experiments, a new process model is introduced which assumes that the elongational viscosity in the Rheotens test is a function of the draw ratio only. The apparent elongational viscosities extracted from Rheotens curves are found to lie in between the steady-state elongational viscosity and three times the shear viscosity.  相似文献   

19.
Present article examines the three-dimensional flow of upper-convected Maxwell (UCM) fluid over a radiative bi-directional stretching surface. Novel non-linear Rosseland formula for thermal radiation is utilized in the formulation of energy equation. The conventional transformations lead to a strongly non-linear differential system which is treated numerically through Runge–Kutta integration procedure together with the shooting approach. We found that heat transfer rate from the sheet has inverse as well as non-linear relationship with wall to ambient temperature ratio. Moreover an increase in viscoelastic fluid parameter (Deborah number) corresponds to a decrease in the fluid velocity and the boundary layer thickness.  相似文献   

20.
The turbulent flow of mildly elastic drag reducing fluids through a straight tube rotating around an axis perpendicular to its own is analysed using boundary layer approximations. The momentum integral approach is used and the governing equations have been solved numerically using the Runge-Kutta-Merson method. The influence of the Deborah number on the velocity distribution and the boundary layer thickness has been exemplified through the analysis. NCL Communication No. 3354.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号