首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theory of fouling dynamics in crossflow membrane filtration is compared with ultrafiltration experiments with suspensions of 0.12 μm silica colloids. It has been experimentally verified that colloidal fouling in crossflow filtration is a dynamics process from non-equilibrium to equilibrium and that the steady state flux is the limiting flux. With the cake concentration cg identified from an independent experiment and the specific cake resistance calculated by Carman–Kozeny equation, the time-dependent flux and the time to reach steady state in the experiments of this study are correctly predicted with the theory of fouling dynamics.  相似文献   

2.
Mass transfer during crossflow ultrafiltration is mathematically expressed using the two-dimensional convective–diffusion equation. Numerical simulations showed that mass transfer in crossflow filtration quickly reaches a steady-state for constant boundary conditions. Hence, the unsteady nature of the permeate flux decline must be caused by changes in the hydraulic boundary condition at the membrane surface due to cake formation during filtration. A step-wise pseudo steady-state model was developed to predict the flux decline due to concentration polarization during crossflow ultrafiltration. An iterative algorithm was employed to predict the amount of flux decline for each finite time interval until the true steady-state permeate flux is established. For model verification, crossflow filtration of monodisperse polystyrene latex suspensions ranging from 0.064 to 2.16 μm in diameter was studied under constant transmembrane pressure mode. Besides the crossflow filtration tests, dead-end filtration tests were also carried out to independently determine a model parameter, the specific cake resistance. Another model parameter, the effective diffusion coefficient, is defined as the sum of molecular and shear-induced hydrodynamic diffusion coefficients. The step-wise pseudo steady-state model predictions are in good agreement with experimental results of flux decline during crossflow ultrafiltration of colloidal suspensions. Experimental variations in particle size, feed concentration, and crossflow velocity were also effectively modeled.  相似文献   

3.
A theoretical model for prediction of permeate flux during crossflow membrane filtration of rigid hard spherical solute particles is developed. The model utilizes the equivalence of the hydrodynamic and thermodynamic principles governing the equilibrium in a concentration polarization layer. A combination of the two approaches yields an analytical expression for the permeate flux. The model predicts the local variation of permeate flux in a filtration channel, as well as provides a simple expression for the channel-averaged flux. A criterion for the formation of a filter cake is presented and is used to predict the downstream position in the filtration channel where cake layer build-up initiates. The predictions of permeate flux using the model compare remarkably well with a detailed numerical solution of the convective diffusion equation coupled with the osmotic pressure model. Based on the model, a novel graphical technique for prediction of the local permeate flux in a crossflow filtration channel has also been presented.  相似文献   

4.
A microscopic model of the layer formation and the cake growth at the crossflow microfiltration will be introduced. The model considers the hydrodynamic, adhesive and friction forces acting on a single particle during the filtration process. It can be shown that mainly the balance between the lift force and the drag force of the filtrate flow determines the layer formation at the membrane. Particle attachment to the layer is mostly an irreversible process. This is due to the large influence of the adhesive forces. The irreversibility of particle attachment was proved by experiments with monodisperse particles. The introduced model allows the prediction of the instationary crossflow filtration processes. The filtration rate and structure of the formed layer can be calculated. In the case of a filtration at constant transmembrane pressure the model calculation shows a good correspondence to the experimental results.  相似文献   

5.
Rapid backpulsing to reduce membrane fouling during crossflow microfiltration and ultrafiltration is studied by solving the convection-diffusion equation for concentration polarization and depolarization during cyclic operation with transmembrane pressure reversal. For a fixed duration of reverse filtration, there is a critical duration of forward filtration which must not be exceeded if the formation of a cake or gel layer on the membrane surface is to be avoided. The theory also predicts an optimum duration of forward filtration which maximizes the net flux, since backpulsing at too high of frequency does not allow for adequate permeate collection during forward filtration relative to that lost during reverse filtration, whereas backpulsing at too low of frequency results in significant flux decline due to cake or gel buildup during each period of forward filtration. In general, short backpulse durations, low feed concentrations, high shear rates, and high forward transmembrane pressures give the highest net fluxes, whereas the magnitude of the reverse transmembrane pressure has a relatively small effect.Rapid backpulsing experiments with yeast suspended in deionized water performed with a flat-sheet crossflow microfiltration module and cellulose acetate membranes with 0.07 μm average pore diameter. The optimum forward filtration times were found to be 1.5, 3, and 5 s, respectively, for backpulse durations of 0.1, 0.2, and 0.3 s. Both theory and experiment gave net fluxes with backpulsing of about 85% of the clean membrane flux (0.022 cm/s = 790 l/m2 h), whereas the long-term flux in the absence of backpulsing is an order-of-magnitude lower (0.0026 cm/s = 94 l/m2 h).  相似文献   

6.
An experimental investigation of the electrokinetic streaming potentials of both fully and partially retentive nanopores as compared with the filtration progress of dilute globular protein solution under different surface charge conditions was performed using hollow fibers. The streaming potential is generated by the electrokinetic flow effect within the electric double layer of the charged surface. Depending on the solution pH, both the protein and the pore wall can be either repulsive or attractive due to the long-range electrostatic interaction. The repulsive electrostatic interaction allows the protein particles to stay in a suspended state above the outer surface of hollow fibers instead of being deposited. The apparent streaming potential value at partially retentive pores is larger than that at fully retentive pores for the oppositely charged case; however, the opposite behavior is shown for the same-charged case. The axial-position-dependent streaming potential was also observed in order to explore the development of a concentration polarization layer during the cross-flow filtration. The time evolution of the streaming potential during the filtration of protein particles is related to the filtrate flux, from which it can be found to provide useful real-time information on particle deposition onto the outer surfaces of hollow fibers.  相似文献   

7.
8.
This study focuses on the use of gas-liquid two-phase crossflow to overcome concentration polarisation in the ultrafiltration of macromolecular solutions as applied to hollow fibre membrane systems. The experimental work was conducted on a purpose built pilot-plant scale rig with albumin and dextran as the test media. The effect of gas injection on the permeate flux and membrane sieving coefficient was examined experimentally at different transmembrane pressures, feed concentrations and gas to liquid flow ratios.The results were encouraging, with flux enhancements of 20–50% obtained for dextrans and 10–60% for albumin, when air was injected into the system over the range of process variables examined. The sieving coefficient of albumin was considerably reduced when gas-liquid two-phase cross-flow was used. These results were compared to those obtained with tubular membrane systems, and an additional mechanism, based on physical displacement of the concentration polarisation boundary layer is proposed. The operational difficulty related to protein foaming is also discussed.  相似文献   

9.
In an effort to further increase the understanding of crossflow filtration, experiments were performed on the influence of particle shape on permeation flux. Five particles of similar density and size distribution but of different shapes were used to test the influence of particle shape, while varying experimental parameters such as crossflow velocity, filtration pressure, solids concentration, membrane morphology and pore size. Particle shape was found to influence the equilibrium flux by the structure of the cake layer formed. Irregularly shaped particles such as branched carbon particles provided higher fluxes due to the high voidage cakes. More regularly shaped particles such as glass spheres resulted in lower fluxes. Platelet aluminium particles had relatively high filtration rates due to the gaps between the plates. The effects of the other experimental parameters typically showed results consistent with previous publications. Using the measured cake mass, a theoretical model based on D'Arcy and Kozeny gave reliable filtration flux compared to the experimental results.  相似文献   

10.
Two α-alumina ceramic membranes (0.2 and 0.8 μm pore sizes) and a surface-modified polyacrylonitrile membrane (0.1 μm pore size) were tested with an oily water, containing various concentrations (250–1000 ppm) of heavy crude oil droplets of 1–10 μm diameter. Significant fouling and flux decline were observed. Typical final flux values (at the end of experiments with 2 h of filtration) for membranes at 250 ppm oil in the feed are ≈30–40 kg m−2 h−1. Increased oil concentrations in the feed decreased the final flux, whereas the crossflow rate, transmembrane pressure, and temperature appeared to have relatively little effect on the final flux. In all cases, the permeate was of very high quality, containing <6 ppm total hydrocarbons. The addition of suspended solids increased the final membrane flux by one order of magnitude. It is thought that the suspended solids adsorb the oil, break up the oil layer, and act as a dynamic or secondary membrane which reduces fouling of the underlying primary membrane. Resistance models were used to characterize the type of fouling that occurs. Both the 0.2 μm and the 0.8 μm ceramic membranes appeared to exhibit internal fouling followed by external fouling, whereas external fouling characterized the behavior of the 0.1 μm polymer membrane from the beginning of filtration. Examination of the external fouling layer showed a very thin hydrophobic oil layer adsorbed to the membrane surface. This oil layer made the membrane surface hydrophobic, as demonstrated by increased water-contact angles. The oil layer proved resistant to removal by hydrodynamic (shear) methods. By extracting the oil layer with tetrachloroethylene, followed by IR analysis, its average thickness at the end of a 2 h experiment under typical conditions was determined to be 60 μm for the 0.2 μm ceramic membrane and 30 μm for the 0.1 μm polymer membrane. These measured amounts of oil associated with the membrane at the end of the experiments are in good agreement with those determined from a simple mass balance, in which it is assumed that all of the oil associated with the permeate collected is retained on or in the membrane, indicating that the tangential flow did not sweep the rejected oil layer to the filter exit.  相似文献   

11.
This paper deals with the influence of a new type of unsteadiness in the flow on the permeate flux in crossflow filtration. A pneumatically controlled valve generates intermittent jets from the main flow leading to the formation of large vortices moving downstream along the tubular membrane. The experimental study was carried out by filtering a bentonite suspension through an ultrafiltration mineral membrane. Flux time measurements were taken under steady and unsteady operating conditions. The unsteadiness leads to a permeate flux more than two times higher than in the usual filtration processes.  相似文献   

12.
A conventional crossflow ultrafiltration (CUF) apparatus was modified by the inclusion of electrodes which permitted a pulsed electric field to be produced across the ultrafiltration membrane (PEF-UF process). Using this apparatus, a discontinuous electrophoretic velocity was imposed upon the proteins being concentrated, opposing their convective movement toward the CUF membrane. This resulted in a lower concentration of rejected solute protein in the fluid boundary layer adjacent to the high-pressure side of the membrane and, hence, in a lower solute-related filtration resistance than in the case of conventional ultrafiltration (zero electric field). Studies of the PEF-UF process with bovine serum albumin (BSA) in the range of 0.5–5% w/v demonstrated a 25–40% decrease in the solute-related resistance to the permeate flux compared to the case of a zero electric field. Accordingly, higher permeate fluxes and, therefore, higher rates of concentration of the protein solution were obtained than for conventional crossflow ultrafiltration. When the electric field was reimposed following a period of operation under conventional CUF conditions, the permeate flux could be restored to nearly the same higher value observed initially for the PEF-UF process.  相似文献   

13.
Separation of oil in water emulsion was carried out by crossflow microfiltration using 3 types of microporous glass tubular membrane with different pore size of 0.27, 0.75, and 1.47 μm. The effect of pore size on permeate flux and oil rejection was investigated and the filtration mechanisms were analyzed based on various types of filtration models.  相似文献   

14.
A mass transfer model in case of ultrafiltration is proposed in the present study which is capable of predicting the permeate volumetric flux and rejection at different pressure, concentration and stirrer speed. The model is based on the steady state mass balance over the boundary layer, coupled with the results from irreversible thermodynamics. It first predicts the membrane surface and permeate concentrations — which are then utilized to calculate rejection. Permeate flux is then predicted using the result obtained from filtration theory. The model utilizes four parameters, namely, solvent permeability, solute permeability, reflection coefficient and specific cake resistance. These parameters along with the known values of the operating conditions and solution properties enable one to predict the flux as a function of time and rejection. The computed results are found to be in good agreement with the previously published data of Bhattacharjee and Bhattacharya during ultrafiltration of PEG-6000 by cellulose acetate membrane.  相似文献   

15.
The effect of an external electric field on the flux in crossflow membrane filtration of a model oily waste water was studied using a carbon fibre – carbon composite membrane as a cathode. Limiting fluxes for low flow rate increased significantly under the conditions studied, from 75 l/m2 h without an electric field to more than 350 l/m2 h using an electric field. The experimentally determined increase in the limiting flux showed good agreement with the theoretical value of 430 l/m2 h calculated using a simple model. The limiting flux increase was affected by the electrophoretic mobility of the oil droplets and the applied electric field strength. When there were no cakes without an electric field due to the high flow rate, the flux increase when using an electric field under at the same conditions was minor. The critical electric field strength was determined, and experimentally obtained values were corresponded with calculated values. Decreasing the crossflow velocity above the critical electric field strength increased the flux, or had no effect, depending on the size of the particles. Permeate quality was also improved to some extent when using the electric field, and a membrane with a large pore size could be used when an electric field was applied. The main disadvantage in using the membrane as a cathode was foaming at the membrane surface causing decrease in the flux enhancement as the conductivity of the feed increased. It was not possible to restore the flux to the original value by applying an electric field after filtration of the oil emulsion without an electric field. An intermittent electric field was thus not efficient enough for keeping the flux at high level.  相似文献   

16.
The ultrafiltration of macromolecules is characterised by a limiting flux at high transmembrane pressures. There is also some evidence that at high pressures and low crossflow velocities the flux decreases slightly with increasing pressure. It is confirmed from a theoretical viewpoint that this can only be caused by a decrease in the average mass-transfer coefficient due to concentration increases in the boundary layer. At the practical level, we propose an expression which, for a given system, enables the ideal flux to be estimated a priori as a function of the transmembrane pressure. The ideal flux is defined as that flux which would occur in the absence of fouling and gelation. The model includes the influence of both osmotic pressure and the variation in viscosity due to concentration polarisation. Thus for predictive purposes knowledge of osmotic pressure and viscosity as a function of concentration is required. The only membrane parameter that has to be experimentally determined is the membrane permeability. In the absence of adsorption (which is the ideal case) this is the permeability to the pure solvent. The model has been tested against Jonsson's data for the ultrafiltration of dextran solutions. The results are most encouraging.  相似文献   

17.
Abstract

Steady-state and transient models are reviewed for predicting flux decline for crossflow microfiltration under conditions in which both external cake buildup and internal membrane fouling are contributing factors. Experimental work is not covered in the scope of this review, although reference is made to a few recent studies which have compared experimental measurements with theory. The steady-state cake thickness and permeate flux are governed by the concentration polarization layer adjacent to the cake of rejected particles which forms on the membrane surface. Depending on the characteristic particle size and the tangential shear rate, Brownian diffusion, shear-induced diffusion, or inertial lift is considered to be the dominant mechanism for particle back-transport in the polarization layer. For typical shear rates, Brownian diffusion is important for submicron particles, inertial lift is important for particles larger than approximately ten microns, and shear-induced diffusion is dominant for intermediate-sized particles. For short times, it is shown that the transient flux decline due to cake buildup is closely approximated by deadend batch filtration theory, independent of the tangential shear rate. For long times, however, the steady or quasi-steady flux increases with shear rate, because the tangential flow sweeps particles toward the filter exit and reduces cake buildup.  相似文献   

18.
The formation of membrane sublayers during cross-flow filtration was studied with a standardized E. coli suspension both in a tubular and a flat channel module with different membrane materials. The height of the layers was calculated for different experimental conditions. Transmembrane pressure, cross-flow velocity, compressibility of the suspended particles, properties of the suspension, particle size and concentration were all found to have a significant effect on the formation of membrane sublayers. A decrease of the layer thickness and corresponding filtration resistance with increasing channel length was observed due to the longitudal transmembrane pressure gradient. The filtration resistance of the layer is found to be the dominant factor determining the flux rate.  相似文献   

19.
A new generator of pulsatile flow has been developed. It consists of a rotating distributor disc judiciously perforated and placed in front of the entrance plane of a tubular membrane bundle. A laboratory-scale apparatus was built with a five membrane bundle. Two configurations were studied: upstream-disc-position (UDP) and downstream-disc-position (DDP). The main new feature is that the pulsatile flow is generated only in the membranes whereas no variation of flow or pressure occurs elsewhere in the equipment. The hydrodynamic behaviour was successfully modelled; experimental and calculated data are in good agreement. Filtration tests with an aqueous suspension of bentonite showed a close relation between the permeate flux and the pulsatile crossflow velocity. First results are encouraging: a reduction in crossflow velocity of 50% with the same power consumption per unit permeate flux as required for steady crossflow filtration.  相似文献   

20.
Using matrix assisted laser desorption ionisation mass spectrum (MALDI-MS), this study reports the observations of the fouling distribution and composition along the membrane channel after the membranes were subjected to ultrafiltration of protein mixture solution in a crossflow module with and without spacer. In the fouling layer on a fully retentive membrane, the protein components with high molecular weight has higher presentation after 2 h of filtration and the presentation reduced to be lower than the smaller components after 6 h of filtration due to protein exchange and displacement phenomena in deposition layer caused by the differences in structure and diffusivity of different components. The protein exchange and replacement in the deposition layer was also observed on partial retentive membrane using a sequential fouling procedure. Fouling distribution along the membrane channel with spacer inserted in the module was more uniform and the flux was higher than that without spacer despite higher protein deposition observed in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号