首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of the chemical structure of styrene-based epoxides, namely, styrene epoxide (SE), α-methylstyrene epoxide (MSE), p-methylstyrene epoxide (pM-SE) and α-methyl-p-methylstyrene epoxide (pM-MSE), in conjunction with TiCl4, on the initiation efficiency (Ieff) in the carbocationic polymerization of isobutylene (IB) was investigated. SE yielded living polymerization, but the initiation efficiency was low when compared to MSE (Ieff=8% and 35%, respectively). pM-SE led to non-living IB polymerization, while pM-MSE revealed linear Mn-conversion plot and narrow MWD with a non-linear first order rate plot. Among the epoxides investigated, MSE was the best initiator to scale up the one-step synthesis of polyisobutylenes (PIBs) carrying one primary hydroxyl head group and one tertiary chloride end group. The hydroxyl functionality of these PIBs determined by 1H-NMR was Fn=1.09±0.16 from 24 experiments.  相似文献   

2.
This work presents a green and very simple approach which enables the accurate and simultaneous determination of benzo[a]pyrene, dibenz[a,h]anthracene, benz[a]anthracene, and chrysene, concerned and potentially carcinogenic heavy-polycyclic aromatic hydrocarbons (PAHs) in interfering samples. The compounds are extracted from water samples onto a device composed of a small rotating Teflon disk, with a nylon membrane attached to one of its surfaces. After extraction, the nylon membrane containing the concentrated analytes is separated from the Teflon disk, and fluorescence excitation–emission matrices are directly measured on the nylon surface, and processed by applying parallel factor analysis (PARAFAC), without the necessity of a desorption step. Under optimum conditions and for a sample volume of 25 mL, the PAHs extraction was carried out in 20 min. Detection limits based on the IUPAC recommended criterion and relative errors of prediction were in the ranges 20–100 ng L−1 and 5–7%, respectively. Thanks to the combination of the ability of nylon to strongly retain PAHs, the easy rotating disk extraction approach, and the selectivity of second-order calibration, which greatly simplifies sample treatment avoiding the use of toxic solvents, the developed method follows most green analytical chemistry principles.  相似文献   

3.
Hydrogen peroxide oxidation of cyclohexane in acetonitrile solution catalyzed by the dinuclear manganese(IV) complex [LMn(O)3MnL](PF6)2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane, TMTACN) at 25 °C in the presence of a carboxylic acid affords cyclohexyl hydroperoxide as well as cyclohexanone and cyclohexanol. A kinetic study of the reactions with participation of three acids (acetic acid, oxalic acid, and pyrazine-2,3-dicarboxylic acid, 2,3-PDCA) led to the following general scheme. In the first stage, the catalyst precursor forms an adduct. The equilibrium constants K1 calculated for acetic acid, oxalic acid, and 2,3-PDCA were 127±8, (7±2)×104, and 1250±50 M−1, respectively. The same kinetic scheme was applied for the cyclohexanol oxidation catalyzed by the complex in the presence of oxalic acid. The oxidation of cyclohexane in water solution using oxalic acid as a co-catalyst gave cyclohexanol and cyclohexanone, which were rapidly transformed into a mixture of over-oxidation products. In the oxidation of cyclohexanol to cyclohexanone, varying the concentrations of the reactants and the reaction time we were able to find optimal conditions and to obtain the cyclohexanone in 94% yield based on the starting cyclohexanol. Oxidation of acetone to acetic acid by the system containing oxalic acid was also studied.  相似文献   

4.
A new class of adenosine analogues with 1,2-disubstituted carbocycles (with cis and trans stereochemistry) have been synthesized. Construction of the base on the amino group of (±)-cis-(2-aminocyclohexyl)methanol was more efficient than the Mitsunobu condensation between the purine base and protected (±)-trans-(2-hydroxymethyl)cyclohexanol. The latter strategy gave the final compound with cis stereochemistry in a short number of steps with the overall yield depending on the nature of the protecting group on the hydroxymethyl group of the diol. However, Mitsunobu condensation between a purine base and the protected (±)-cis-(2-hydroxymethyl)cyclohexanol is not an ideal method to obtain trans purine derivatives because the elimination reaction is faster than the substitution reaction.  相似文献   

5.
The severe swelling behavior of most hydrophobic membranes has always been an obstinate problem when separating organic mixtures by pervaporation. In some cases, hydrophilic membranes may be an appropriate alternative. In this study, amphiphilic copolymer Pluronic F127 was employed as a surface modifier to fabricate polyethersulfone (PES) asymmetric pervaporation membranes via surface segregation. The scanning electron microscopy (SEM) photographs showed an asymmetric structure of PES/Pluronic F127 membranes. The Fourier transform-infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements confirmed the hydrophilic modification of the membrane surface. Based on the distinct difference of solubility in water between thiophene and n-octane, the prepared membranes were utilized to remove thiophene from n-octane by pervaporation. The effect of Pluronic F127 content on the pervaporation performance was evaluated experimentally. It has been found that both the permeation flux and enrichment factor exhibited a peak value of approximately 60 wt% of the Pluronic F127 content. The highest enrichment factor was around 3.50 with a permeation flux of 3.10 kg/(m2 h) for 500 mg/L sulfur in the feed at 30 °C. The influence of various operating parameters on the pervaporation performance was extensively investigated.  相似文献   

6.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

7.
A TiO2 membrane supported on a planar porous Ti–Al alloy was prepared by combination of electrophoretic deposition and dip-coating. In the electrophoretic deposition process, the membrane thickness increased linearly with the square root of the deposition time, while increased with decrease of the suspension viscosity. The perfect TiO2/Ti–Al composite membrane was obtained by further dip-coating modification. SEM images showed that the surface of the membrane was defect-free. XRD result indicated that rutile TiO2 still remained in the membrane bulk as the main phase, while a new phase titanium oxides with the form of TixOy, where y is less than 2x, was also observed. The supported TiO2/Ti–Al composite membrane had an average pore size of 0.28 μm, a thickness of 40 μm or so and a pure water flux of 3037 L m−2 h−1 bar−1.  相似文献   

8.
Homogeneous tertiary N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAT, are niche intermediates in the synthesis of homogeneous N-alkyl (C1–C18)-N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylammonium chlorides (unitary degree of oligomerization of ethylene oxide in the polyoxyethylene chain). This paper synthetically presents the dependence of the reductive methylation yields of homogeneous primary β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAP, on the reaction time (10–90 min), the temperature (70 °C), the molar ratio formic aldehyde /LM(EO)nAP (1.1/1–2.5/1), the molar ratio HCOOH/LM(EO)nAP (5/1), the degree of oligomerization of ethylene oxide in the homogeneous polyoxyethylene chain in the 3,6,9,12,18 series, and the structure of the phase-transfer catalysts. The steric effects of hydrophobic groups CH3 and C18H37 grafted onto the ammonium function, and the micellar phenomena in the vicinity of their critical micellar concentration, directly proportional to the homogeneous degree of oligomerization, were highlighted. In all cases, a steady increase in reductive methylation yields was observed, with even quantitative values obtained. The high purity of the homologous series LM(EO)nAT will allow their personalization as reference structures for the study of the evolution of basic colloidal characteristics useful in forecasting technological applications. LM(EO)nAP were obtained either by direct amidoethylation (nucleophilic addition under basic catalysis of homogeneous lauryl/myristyl 7/3 polyethoxylated n = 3, 6, 9, 12, 18 alcohols, LM(EO)nOH, to acrylamide monomer) or by cyanoethylation of LM(EO)nOH under basic catalysis at 25–50 °C, in the presence of Fe2+ cations as oligomerization/polymerization inhibitor, followed by partial acid hydrolysis of homogeneous β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionitriles, LM(EO)nPN, to β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionamides, LM(EO)nPD, which led to LM(EO)nAP by Hoffmann degradation. Homogeneous higher tertiary polyetheramines LM(EO)nAT were structurally characterized.  相似文献   

9.
聚乙烯基咪唑/陶瓷复合膜的渗透汽化性能   总被引:2,自引:0,他引:2  
曹绪芝  平郑骅 《化学学报》2008,66(7):803-809
通过自由基接枝聚合反应在硅烷化处理的沉积有SiO2活性层的无机陶瓷微孔膜上接枝乙烯基咪唑(VI),经质子化后,制备出一种聚电解质亲水性有机-无机复合膜。用FT-IR表征了接枝PVI前后化学组成的变化;用TGA 测定了单体在二氧化硅粉末上的接枝率;用SEM观察了接枝反应前后膜表面形态的变化;系统研究了操作条件对膜的渗透汽化分离性能的影响。结果表明,这种膜用于醇/水、酸/水等水溶液的分离有很好的选择性和渗透性,膜的渗透性随操作温度的变化表现异常,结合SEM的结果可以推断有机单体主要是在无机膜的孔内接枝形成活性分离层。  相似文献   

10.
In order to deduce the mechanisms of hemolysis induced with the nonionic surfactants, polyoxyethylene cholesteryl ethers, C27H45(OCH2CH2) n OH (n=8, 25, 30, 50) and polyoxyethylene dihydrocholesteryl ethers, C27H47(OCH2CH2) n OH (n=15, 30, 50), the interaction of these surfactants with the liposomal membrane as a simple model membrane was investigated in terms of a leakage of the entrapped marker, and a change of the membrane fluidity. The time-courses of the marker leakage were characterized with two kinetic parameters, the initial induction period and the apparent first-order rate constant. The polyoxyethylene chain length was an important factor in the membrane-lytic activities, and the maximal rate as well as the maximal amount of the marker leakage was observed with n=25–30 in these surfactants series. However, the apparent activation energies derived from the two kinetic parameters increased almost linearly with the hydrophilic chain length. The used surfactants tended to fluidize the liposomal membrane in the concentration ranges of surfactants where the marker leakage is not at all or only slightly induced — but with the higher concentration of the cholesteryl derivatives, the apparent fluidity was significantly reduced. From these observations, the mechanisms of the membrane-lysis are discussed.  相似文献   

11.
Hydrated layered crystalline barium phenylarsonate, Ba(HO3AsC6H5)2·2H2O was used as host for intercalation of n-alkylmonoamine molecules CH3(CH2)n-NH2 (n = 1-4) in aqueous solution. The amount intercalated (nf) was followed batchwise at 298 ± 1 K and the variation of the original interlayer distance (d) for hydrated barium phenylarsonate (1245 ppm) was followed by X-ray powder diffraction. Linear correlations were obtained for both d and nf as a function of the number of carbon atoms in the aliphatic chain (nc): d = (2225 ± 32) + (111 ± 11)nc and nf = (2.28 ± 0.15) − (11.50 ± 0.03)nc. The exothermic enthalpies of intercalation increased with nc, which was derived from the monomolecular amine layer arrangements with the longitudinal axis inclined by 60° to the inorganic sheets. The intercalation was followed by titration with amine at the solid/liquid interface and gave the enthalpy/number of carbons correlation: ΔH = −(7.25 ± 0.40) − (1.67 ± 0.10)nc. The negative Gibbs free energies and positive entropic values reflect the favorable host/guest intercalation processes for this system.  相似文献   

12.
Membrane-bioreactor processes have increased considerably in recent years. However, the natural disadvantages of common membrane materials, such as hydrophobic surface, cause membrane fouling and cumber further extensive applications. In this work, hydrophilic surface modification of polypropylene microporous membranes was carried out by the sequential photoinduced graft polymerization of d-gluconamidoethyl methacrylate (GAMA) to meet the requirements of wastewater treatment and water reclamation applications. The grafting density and grafting chain length were controlled independently in the first and second step, respectively. Attenuated total reflection–Fourier transform infrared spectroscopy (FT-IR/ATR) and X-ray photoelectron spectroscopy (XPS) were employed to confirm the surface modification on the membranes. Water contact angle was measured by the sessile drop method. Results of FT-IR/ATR and XPS clearly indicated that GAMA was grafted on the membrane surface. It was found that the grafting chain length increased reasonably with the increase of the UV irradiation time. Water contact angle on the modified membrane decreased with the increase of the grafting chain length, and showed a minimum value of 43.2°, approximately 51.8° lower than that of the unmodified membrane. The pure water fluxes for the modified membranes increased systematically with the increase of the grafting chain length. The effect of the grafting chain length on the antifouling characteristics in a submerged membrane-bioreactor for synthetic wastewater treatment was investigated. After continuous operation in the submerged membrane-bioreactor for about 70 h, reduction from pure water flux was 90.7% for the virgin PPHFMM, and ranged from 80.8 to 87.2% for the modified membranes, increasing with increasing chain length. The flux of the virgin PPHFMM membrane after fouling and subsequent washing was 31.5% of the pure water flux through the unfouled membrane; for the modified membranes this ranged from 27.8 to 16.3%, decreasing with increasing chain length. These results demonstrated that the antifouling characteristics for the glucopolymer-modified membranes were improved with an increase in GAMA chain length.  相似文献   

13.
The (p,ρ,T) and (ps,ρs,Ts) properties of {(1−x)CH3OH + xLiBr} over a wide range of state parameters are reported for the first time. The experiments were carried out in a constant volume piezometer over a temperature range from 298.15 K to 398.15 K, at 0.08421, 0.13617, 0.19692, 0.23133 and 0.26891 mole fractions and from atmospheric pressure up to 60 MPa. The experimental uncertainties are ΔT=±3 mK for temperature, Δp=±5·10−2 MPa for high pressure and Δp=±5·10−4 MPa for atmospheric pressure, Δρ=±3·10−2 kg · m−3 for density. An equation of state was derived for correlation of the experimental data of the solutions.  相似文献   

14.
We calculated the molecular field coefficients, nFeFe and nRFe (R=Sm, Gd, Tb, Ho and Tm), for R2Fe17−xGax and the values of nFeFe and nSmFe for R2Fe17−xTx (T=Al and Si) using the experimental values of the Curie temperature. The values of nFeFe increase in spite of the decrease of μFe for 0?x?5. The values of nSmFe have large values when the magnetic anisotropy is axial. For 6?x?8, the values of nFeFe, nHoFe and nTmFe increase largely, which is related to the change of the easy magnetization direction. For Y2Fe17−xTx (T=Ga and Al), the values of nFeFe have a maximum value with increasing those of μFe. With increasing V−1, the values of nFeFe have a maximum value around the same value of V−1 for Y2Fe17−xTx (T=Ga and Al). For Y2Fe17−xSix, the values of nFeFe increase with increasing V−1.  相似文献   

15.
Blend membranes of chitosan and N-methylol nylon 6 were prepared by solution blending. Their pervaporation performances for the separation of ethanol–water mixtures were investigated in terms of acid (H2SO4) post-treatment, feed concentration, blend ratio and temperature. The pervaporation performance of the blend membranes was significantly improved by ionizing with H2SO4. The blend ratio of chitosan and N-methylol nylon 6 plays a different role at feed solutions of low and high water content. At a feed solution having low water content, an increase in chitosan content caused a decrease in permeability and an increase in separation factor. At a feed solution having high water content, the permeability increases with an increase in chitosan content, while the separation factor shows a maximum value around 60 wt% chitosan. It is proposed that extra permeation channels generated from the phase separation boundary between ionized chitosan and N-methylol nylon 6 account for the abnormal temperature dependence of pervaporation performance of the blend membranes.  相似文献   

16.
A multiple grafting technique was used to synthesize arborescent‐branched high‐molecular mass poly(2,3‐epoxypropan‐1‐ol). In the first step, linear polyglycidol (n = 10 300) was obtained. Some of the hydroxyl groups were transformed into alcoholate anions in a reaction with potassium tert‐butoxide, and the obtained polyanion was used to initiate the polymerization of 1‐ethoxyethyl glycidyl ether, the glycidol having a protected hydroxyl group. Removing the protecting groups yielded polyglycidol‐graft‐polyglycidol. This procedure was repeated twice to give three generations of comb‐burst branched polyglycidol chains with n of 8.2×104, 7.4×105 and 1.8×106.  相似文献   

17.
In this communication, a porous stainless steel (PSS) tube was electrolessly plated into Pd–Ag membrane reactor which was used for separating hydrogen produced in an ethanol steam reforming reaction with the addition of oxygen, which has not been reported before. Palladium and silver were deposited on porous stainless steel tube via the sequential electroless plating procedure with an overall film thickness of 20 μm and Pd/Ag weight ratio of 78/22. Ethanol–water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2 or 0.7) were fed concurrently into the membrane reactor packed with MDC-3. The reaction temperatures were set at 593–723 K and the pressures 3–10 atm. The effect of oxygen addition plays a vital role on the ethanol steam reforming reaction, especially for the Pd–Ag membrane reactor in which a higher flux of hydrogen is required. If oxygen in the feed is not sufficient, it would be possible that steam reforming reaction prevails. Inversely, high O2 addition will shift the reaction scenario to be partial oxidation dominating, and selectivity of CO2 increases with increasing oxygen feed. At high pressure, autothermal reaction of ethanol would be easily reached.  相似文献   

18.
The enthalpies of solution of aliphatic compounds [{aliphatic amine, H(CH2) n NH2, n = 3 to 10}, aliphatic benzene {H(CH2) n C6H5, n = 0 to 8}, and alkane {H(CH2) n H, n = 6 to 10}] in dimethyl sulfoxide have been measured at 298.15 K in the low concentration range from x = 5 × 10?6 to x = 0.002. The partial molar enthalpies at infinite dilution of each aliphatic compound were determined and were found to increase linearly with increasing number of methylene groups. The enthalpic group contribution of methylene, phenyl, methyl, hydroxyl, nitrile, and amine in aliphatic compounds were 1.55, 2.65, 3.81, ?2.55, ?3.71, and ?4.43 kJ-mol?1, respectively.  相似文献   

19.
Porous PMMA/Na+–montmorillonite (MMT) cation-exchange membranes were successfully prepared by entrapment method in this study. One approach (simple mixing) was to mix commercial PMMA polymer with Na+–MMT clays in solvent for membrane preparation (Membrane A). The other approach (emulsion polymerization) was to synthesize the PMMA/Na+–MMT polymer composite via emulsion polymerization first, followed by membrane casting (Membrane B for Kunipia F clays and Membrane C for PK-802 clays). Membrane morphology and properties were characterized. The thermogravimetric analysis (TGA) verified the near complete incorporation of feed Na+–MMT clays in the PMMA/Na+–MMT composite membranes, while X-ray diffractograms (WXRD) exhibited the slightly enlarged interlayer spacing of Na+–MMT. The range of cation-exchange capacity (CEC) was 9–32 μequiv./47 mm disc. For batch cationic dye adsorption, the best performance was achieved by Membrane B with feed Na+–MMT/MMA (M/P) ratio (w/w) = 0.5 and Membrane C with feed M/P = 0.6, where about 95% Methyl violet adsorption was attained in 2 h. The optimal desorption solution was 1 M KSCN in 80% methanol and its related dye desorption efficiency was 92%. In the flow process using one piece of 47 mm disc of Membrane B (M/P = 0.5), dye solution was recirculated for 6 h and ≥85% dye could be removed. Higher than 94% of dye was desorbed at 1 or 4 mL/min, and the membrane regenerability was proved by successfully performing three consecutive cycles.  相似文献   

20.
Powder neutron and X-ray diffraction studies show that the double perovskites in the region 0?x?1 exhibit two crystallographic modifications at room temperature: monoclinic P21/n and tetragonal I4/m, with a boundary at 0.75<x<0.9. Magnetic susceptibility measurements indicate that for x=0 and 0.5 Sr2−xLaxMnWO6 orders antiferromagnetically (AFM) at 15 and 25 K, respectively, for 0.75?x<1.0, a contribution of weak ferromagnetism (FM), probably due to canted-AFM order, increases with increasing x. The end point compound SrLaMnWO6 shows the strongest FM cluster effect; however, no clear evidence of magnetic order is discernable down to 4.2 K. X-ray absorption spectroscopy (XAS) confirms Mn2+ and mixed-valent W6+/5+ formal oxidation states in Sr2−xLaxMnWO6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号